学年

教科

質問の種類

数学 高校生

数B統計、母平均の推定の問題です。 わかりやすくするためにxをyで置き換えているのですが、分母の5はどこから来ているのですか? 解答よろしくお願いします🙇‍♀️

B2-34 第2章 雑 (174) 例題 B2.14 母平均の推定 本 **** ある高校2年生の男子の中から無作為に抽出した100人の身長は下のよ うであった。この高校2年生の男子の平均身長を信頼度95%で推定せよ ただし,555=23.6 として計算せよ。 例是 150 以上 160 155 165 170 175 180 身長 未満 155 160 165 170 175 180 計 185 人数 1 4 17 100 35 26 143 1 を用いても差し支えない.そこで,与えられたデータから、標本の標準偏差 s を求める 考え方 母標準偏差のがわからない場合、標本の大きさが大きいときは、標本の標準偏差 fy yfyf 1 -3 -3 4-2-8163 17-1-17 00 91702525 解答 右の表は、階級値 x ご x とに度数 f階級値 152.5 167.5 を仮平均としたと 157.5 162.5 x-167.5 の値, きのy= 167.5 35 階級値のままでは また,yfyf の値とそ 172.5 26 1 26 26 算が大変なので、 の縦の合計をまとめたも のであるの標準偏差は、182.5 177.5 14 2 28 56 y= 30083 9 _x-167.5 5 とおい x=5y+167.5 であるか ら、標本平均は,平均X 計 100 1435 151 て考える. 35 x=E(x)=E(5y+167.5)=5E(y)+167.5=5×- +167.5=16925XU 100 標本の標準偏差は, 151 35 √555 abが定数で 100 100 4 x = ay + b のとき 標本の大きさ100 標本平均169.25 標本の標準偏差 0(x)=lalo(y) より、この高校2年生男子の平均身長に対する信頼度 95%の信頼区間は, (555 4 あっ 考え [169.25-1.96x555 1 より / 555 1 -X- つまり、 [168.1, 170.4] 4 √100' 169.25+1.96X- -X- 4 150 0.0016 Focus 8804.0XS= 標本の大きさが大きいとき, 標本平均の値を標本の標準編 | 差の値をs とすると, 母平均に対する信頼度 95% の信頼区間は、 平 x-1.96×x+1.96×

解決済み 回答数: 1
数学 高校生

2020-5 (2)なのですが、問題文に母比率とあったため、私は2枚目の写真ように解くのかなと思ったのですが、解説を見ると、これは本を借りるか借りないかの二項分布とあったのですが、2枚目の公式を使わない理由を教えていただきたいです🙇‍♀️ どなたかすみませんがよろしくお願い... 続きを読む

第3問~第5問は,いずれか2問を選択し、解答しなさい。 426040 R 20 128720 第5問 (選択問題点 (4+162 以下の問題を解答するにあたっては,必要に応じて35ページの正規分布表を ×10111213 R 用いてもよい。 08 97 ある市の市立図書館の利用状況について調査を行った。720 P6125436 18 162 (4 306 54 360 (1) ある高校の生徒 720人全員を対象に, ある1週間に市立図書館で借りた本の 冊数について調査を行った。 その結果,1冊も借りなかった生徒が612人 1冊借りた生徒が54人, 2冊借りた生徒が 36人であり、3冊借りた生徒が18人であった。4冊以上借 りた生徒はいなかった。 .00 50 COLO OCQ+1と (2)市内の高校生全員を母集団とし、 ある1週間に市立図書館を利用した生徒の 割合(母比率) を とする。この母集団から600 人を無作為に選んだとき、そ 1週間に市立図書館を利用した生徒の数を確率変数Yで表す。 をまと ものである。 240 034 =0.4のとき,Yの平均はE(Y) = キクケ 標準偏差は。 (Y)= コサになる。 ここで,Z=- Y- キクケ240 コサ とおくと、 標本数 600 は十分 0.0 0.0000 0.0040 に大きいので,Zは近似的に標準正規分布に従う。 このことを利用して、Y 240 0.16 1440 240 3805 P 215 以下となる確率を求めると、その確率は0.シスになる。 0.1554 0.1591 0.182 198 0.1915 0.1950 0.108 0.6 また, p = 0.2 のとき, Yの平均はキクケ 1 倍、標準偏差 0.3 02886 この高校の生徒から1人を無作為に選んだとき, その生徒が借りた本の冊数 を表す確率変数をXとする。 0.9 0.3159 0.31 ソ V コの 一倍である。 3 数学Ⅱ・数学B第5問は次ページに 1.1 0.3643 0.3665 1.2 0.2840 0.3869) a xenin 1.3 0.40324049 1.4 0.419204207 このとき,Xの平均(期待値)はE(X) 1.5 0.4332 0.445 022 日本 イ であり、X2の平均は 1.6 0.4452 0.4463 0.4470 ウ E(X2)= I 2 である。 よって, Xの標準偏差は (X) = V オ で カ ある。 22 V(x)=1/2-1(1) 2 2.3 1.7 0.4554 0.44 1.8 0.4641 0.4649 0.4666 1.9 0.4713 0.4719 2.0 0.4772 04778 04733 2.1 0.4821 0.456 0.480104864 0.12930.4 0. 4728 (数学Ⅱ・数学B第5問は次ページに続く。) 2.4 0.4918 0.40 0.423 2 2 16 2.5 0.48 0.4940 0.494 26 0.4969 27 0196 04566 780. 4275 0.497 44

解決済み 回答数: 1
数学 高校生

ケコがわかりません。 3枚目の写真が私が解いてたときに書いたものなのですが、範囲のzのところを前の段階で求めた公式を当てはめて解いてたのですが、2枚目の写真の上の方の蛍光ペンのようになる理由がわかりません。どうやったら真ん中がpとなるのですか? 計算をしたのですが、すごい数... 続きを読む

第5問 (16点) 次のような実験を行うことを考える。 太さが十分に小さく長さがしである。 曲がっていない針を1本用意する。 次に、 平坦な机の上に、隣同士の直線間の距離がLとなるような平行線を多数描いておく このとき、次の試行を1600回繰り返す。 試行 針を無作為に机の上に落とし、 机の上に落ちて倒れた針が机に描かれた平行線と共有点 をもつかどうかを確認した後。 針を机から取りあげる。 k1600 とする. 回目の試行について、 落ちた針が机に描かれた平行線と共有点をもつ場合は 1, 共有点をも たない場合は0となるような確率変数を X とおく。 また とする. X=Xi+X+... + X1600 X-m d ① X-n X-6 m X- m 回の試行を行う形式をとることで、 今回の実験をすることができた。 (2) 太郎さんと花子さんのクラスでは、32人の全生徒が「試行を50回ずつ, クラス全体で計1600 実験の結果, 落ちた針が机に描かれた平行線と共有点をもった回数がクラス全体でちょうど 1000回となった。 このとき 落ちた針が机に描かれた平行線と共有点をもつ状況の発生頻度は である。 R= 1000_5 1600 8 今回の実験結果から, (1) でおいたかの値の, 信頼度95%の信頼区間を推定しよう。 (i) 本間では, 正規分布表 (省略) を用いて答えよ。 標準正規分布(0, 1)に従う。 (1)の確率変数Zについて、正規分布表より P(- キク)=0.95 イ)に従う。 ! が成り立つ。 また、実験回数の値1600は十分大きい数なので, 二項分布 Bア )は近似的に 落ちた針が机に描かれた平行線と共有点をもつ確率を とおくと,Xは二項分布 B 7 正規分布 N (m, ) と見なすことができる。ただし キク ウ m= また, >0である。 I ① ここで, 確率変数Xが近似的に正規分布 N (m, ♂) に従うので、 確率変数Zを z= オ と定めると, Zは近似的に標準正規分布 N(0, 1)に従う。 (1)の結果より,標準正規分布 N(0, 1)に従う確率変数 Zはおよそ95%の確率で不等式 カキク zs カ をみたしている。 このとき、 確率変数 X, Zは関係式 ② キク Z= オ TO ここで, ①よりm= であり、これはを含む式である。 の解答群(同じものを繰り返し選んでもよい。) また、得られた実験結果では X=1000であったので 01600 ① 40 ③ X 1600 5 =R- 40 1600 が成り立つ。 ⑤ 1600p ⑥ 40p ⑦ カ 9 40 1600 さらに、①の エ については,次の仮定を適用して考えるものとする。 [仮定 エ の解答群 H の式中に現れる♪は、今回の実験での発生頻度Rの値 01600p ① 40p ② 40 41600p(1-p) 40p(1-p) p(1-p) 40 ③ 1600 AI-p) 1600 5 R 8 に置きかえて計算してもよい。 この仮定の下での値の信頼度95%信頼区間は

解決済み 回答数: 1
数学 高校生

ケコがわかりません。 ①2枚目の写真で蛍光ペンを引いているところなのですが、教科書で見たことがない解き方で、3枚目の写真(自分でまとめたノート)なのですが、これは黄色の蛍光ペンとピンクの蛍光ペンどちらなのですか? ②共通テストで統計が出るのですが、初めの二項分布とかは誘... 続きを読む

第5問 (16点) 次のような実験を行うことを考える。 太さが十分に小さく長さがしである, 曲がっていない針を1本用意する。 次に, 平坦な机の上に, 隣同士の直線間の距離がLとなるような平行線を多数描いておく このとき、次の試行を1600回繰り返す。 試行 針を無作為に机の上に落とし, 机の上に落ちて倒れた針が机に描かれた平行線と共有点 をもつかどうかを確認した後, 針を机から取りあげる。 (1) 1≤k≤1600 +3. k回目の試行について, 落ちた針が机に描かれた平行線と共有点をもつ場合は1, 共有点をも たない場合は0となるような確率変数を X とおく. また + X=X+X₂++X1600 m とする. 落ちた針が机に描かれた平行線と共有点をもつ確率を とおくと, Xは二項分布 Bア, に従う。 で また、実験回数の値1600は十分大きい数なので, 二項分布 B( 正規分布 N(m,) と見なすことができる。 ただし ・① は近似的に X-m ① X-m ② X-a 6 m ③ X-02 m 回の試行を行う形式を 形式をとることで, 今回の実験をすることができた。 のの結果、落ちた針が机に描かれた平行線と共有点をもった回数がクラス全体でちょうど 1000回となった。 _1000_5 R=1 1600 8 このとき、落ちた針が机に描かれた平行線と共有点をもつ状況の発生頻度 今回の実験結果から, (1) でおいたかの値の, 信頼度 95%の信頼区間を推定しよう (i) 本間では, 正規分布表 (省略) を用いて答えよ。 1600 |標準正規分布 N (0, 1)に従う, (1)の確率変数Zについて, 正規分布表より P(カキクZカキク)=0.95 が成り立つ。 (i)の結果より,標準正規分布 N(0, 1)に従う確率変数Zはおよそ95%の確率で不等式 ウ m= σ²= H カキク ZSカ キク また, >0である。 をみたしている。 ここで, 確率変数Xが近似的に正規分布 N(m, ♂) に従うので, 確率変数Zを a である。 このとき,確率変数X, Zは関係式 ② 220 Z= オ ...2 Z= オ TOCH と定めると, Zは近似的に標準正規分布 N(0, 1)に従う。 をみたす。 er-14 ア ウ の解答群(同じものを繰り返し選んでもよい。) 1 1 ⑩ 1600 ① 40 ② 1 ③ ④ ⑤ 1600p 6 40p ⑦カ ⑧ 44 40 1600 D 40 1600 I の解答群 ⑩ 1600p ① 40p 144 4 1600p(1-p) 40 p(1-p) 5 40p(1-p) ⑦ 40 1600 ここで, ①よりm= ウであり,これはかを含む式である また,得られた実験結果では X=1000 であったので 3.081 X 1600 5 =R= 8 (1 が成り立つ。 さらに、①の エ については,次の仮定を適用して考えるものとする。 仮定 エ の式中に現れるかは,今回の実験での発生頻度Rの値 D 1600 p(1-p) R=555 8 に置きかえて計算してもよい。 この仮定の下での値の信頼度 95%の信頼区間は

解決済み 回答数: 1