学年

教科

質問の種類

数学 高校生

なぜ75の答えはどちらでもいいのに76の答えは1つしかダメなんですか?

■0周年 IDE 130 海にま 指針 シン 昔の活 あと1 基本 例題 76 2次関数のグラフの平行移動 (2) 20 2次関数y=2x2+6x+7 y=2x2-4x+1 ①のグラフは,2次関数 000 ②のグラフをどのように平行移動したものか。基本事項 x 軸方向に 1, y 軸方向に -2 だけ平行移動すると,放物線 C:y=2x2+8x+9 に移されるような放物線Cの方程式を求めよ。 (1) 頂点の移動に注目して考えるとよい。 まず,①,② それぞれを基本形に直し、頂点の座標を調べる。 (2) 放物線Cは, 放物線 C を与えられた平行移動の逆向きに平行移動」 ある。 p.124 基本事項 3 ② を利用。 (1) ① を変形すると y=2(x+3)²+55/5 5 ①の頂点は点 (12/31) y=2(x-1)2-1 ②を変形すると ②の頂点は (1,-1) 3-2 vico 5-2 ② [9] 0 1 x ② のグラフをx軸方向に p, y 軸方向に q だけ平行移動 したとき, ① のグラフに重なるとすると 1点 グラ した。 ①:2x2+6+7 =2(x2+3x)+1 =2+2+3+ -2.1 ②:2x2-4x+1 ① 点 x軸 3軸 原点 ② 関 x 原 車 解説 ■ 対称移 平面上 =2(x²-2x)+すこと =2(x²-2x+1 特に, -2-12+1 ヤー ミチー 解答 チャート 原点を (a 15 1+p=123-1+g=/2/27 (*) 頂点の座標の ゆえに p=− q= 5 2 7(*) 見て, 2 3 55 (S- -1=- よって,①のグラフは,②のグラフをx軸方向に一 5 2 2'2 7 2 としてもよい。 放物 2 軸方向に だけ平行移動したもの。 したがって y=2x2+12x+21 JST y=2(x+3)+3_ (2)放物線Cは,放物線 C を x 軸方向に -1, y 軸方向に 2だけ平行移動したもので,その方程式は』(S) メー y-2=2(x+1)+8(x+1)+9_ 9 (8+x)s- 別解放物線 C の方程式を変形するとy=2(x+2)2+1 よって,放物線 C の頂点は点(-2, 1) であるから,放 物線Cの頂点は 点(-2-1, 1+2) すなわち 点(-3, 3) ゆえに、放物線Cの方程式は ly-y-2 換え。 頂点の移動に着 法。 X す 重 軸方向に1, 放物 (1- y軸方向に - 2 得 C 軸方向に と C 軸方向に2 Q [x→x-(-1) す

未解決 回答数: 0
数学 高校生

青マーカーで引いてあるkとk+1の関係式がわかってないといけないのは何故でしょうか?k+2とkの関係を証明するだけではいけないのですか?教えて頂きたいです。

・cos on 倍角公式 : チェビシェフ 20 次の問いに答えよ。 0-E (1) n を正の整数とする. どんな角に対しても cosno=2cos0cos(n-1)0-cos(n-2)0 が成り立つことをを示せ. また, ある多項式 Pn(x) を用いて cos は cosno = pn(cose) と表されることを示せ oni (2) Pn(x)はnが偶数ならば偶関数, 奇数ならば奇関数になることを 示せ. 3 tan (3)多項式 pn(x) の定数項を求めよ. また, Pn(x) の1次の項の係数 を求めよ. [九州大〕 アプローチ (1-x) (イ) cos e には 2倍角, 3倍角の公式があります: cos 20 = 2 cos2 0–1 cos 30 = 4cos30-3cos0 この これらの右辺は cose の多項式になっているので,一般に 「cosno は cost の多項式になる」と予想されます。 これを示すのが本間 (1) です. n=4のと きは cos 40 = cos 2(20) = 2 cos² 20 -1 立 =2(2cos20-1)2-1 かっていないといけませんが, cos(k + 1)0 = coskocososin k0 sin O となり, sin0 がでてきてしまい、うまくありません. そこで誘導がついて n=k, いて, cos n は cos(n-1)0 と と cos(n-2) と cose でかけるので,n n=k+1のときを仮定するとn=k+2が示せることがみえてきます。す なわち となり、Pa(x) から Pa(x)の存在がわかります。 これらから Pa(x)の存在を 示すのに帰納法が使えないかと考えみます。そのためには「n=kのときと n=k+1のときの関係」すなわち「cosk と cos(k + 1)6 の関係式」がわ + + S となり合う関係 が分かってないと いけない

未解決 回答数: 0