学年

教科

質問の種類

数学 高校生

数学B、数学的帰納法の問題についての質問です。 下の赤いボールペンで線を引いた下から2行目のn=2kの部分ですが、この時「kは自然数」や「kは整数」などの断り書きはしなくても良いのでしょうか? 普通の帰納法の問題では、n=kで命題の成立を仮定する時に、nが自然数なのでn=k... 続きを読む

EX (1,2, b1=1 および 033 1+1=2+3b, b+1=a+2b(n= 1, 2, 3. ......) で定められた数列{a}{b}がある。 Cab とするとき (1) C2 を求めよ。 (2) Cm は偶数であることを示せ。 (3)が偶数のとき, C7は28で割り切れることを示せ。 [北海道太] ←各漸化式に n=1 を代 b2=a1+2b1=2+2・1=4 (1) a2=2a1+3b」=2・2+3・1=7, よって C2=azbz=7.4=28 (2) [1] n=1のとき C=ab=21=2であるから, Cn は偶数である。 [2] n=kのとき, C が偶数であると仮定すると, Ck=2mm は整数)と表される。 n=k+1のときを考えると Ck+1=ak+1bk+1=(20+3bk) (+20k) =2a2+7akbk+65k2 =2ak+7.2m+60m² =2(ax²+7m+3bk²) +7m+3bk2は整数であるから, Ck+1 は偶数である。 よって, n=k+1のときも成り立つ。 [1] [2] から すべての自然数nに対してcmは偶数である。 (3) [1] n=2のとき C2=28であるから, C7は28で割り切れる。 [2] n=2kのとき, C2kが28で割り切れると仮定すると, C2k=28m (mは整数)と表される。 入する。 ←数学的帰納法で証明。 ←akbn=ch=2m ←漸化式から、すべての n に対して, an, bm は整 数である。 ←数学的帰納法で証明。 [n=2, 4, .... 2k, ... が対 象である。

解決済み 回答数: 1
数学 高校生

数列の問題です 右の緑マーカーを引いているP1=2/5ってどうやって出すんですか??

例題 B1.51 漸化式と確率 ( 2 ) **** ら1個の玉を取り出し、数字を調べて袋へ戻す。 この試行をn回続けて 袋の中に1から5までの数字を書いた5個の玉が入っている. この中か 得られる他 答えよ。 2個の数字の和が偶数である確率を とするとき 次の問いに (1) Pr+1 をPm で表せ (2) pm を求めよ . 第8章 回目 の 考え方 (1) (n+1) 個の数字の和が偶数となるのは、 解答 ・ (慶應義塾大改) おも (i)回目までの数字の和が偶数で, (n+1)回目も偶数 回目までの数字の和が奇数で,(n+1)回目も奇数 の2つの場合が考えられる. (2)(1)で求めた式 (漸化式) から " を求める。 (1)(n+1)回の試行で,(n+1)個の数字の和が 偶数となるのは, 2回の試行での数字の和が偶数で (n+1)回目 も偶数の場合か、 wwwwwww wwwww 回の試行での数字の和が奇数で (n+1)回目 wwwwwww n 割っ も奇数の場合である。 (偶数)+(偶数) (偶数) (奇数)+(奇数 偶数) 数 2 できか ) wwwwww よって, 2 +(1-pn) +1=5 www (2) (1)より. Pn+1 2 5 15 3-5 1 は, n個の数字の和が 奇数である確率(余事象) 特性方程式 したがって、数列{po-12 初項 1 121 公比・ 25 2 10' の等比数列だから, n-1 10 2 5 よって | Focus 3 α= + より、α 2 初 公比rの等比数列の 一般項は a=ar"- n回目と(n+1)回目の試行に注目して漸化式を作る B151 袋から,それぞれ1個ずつ玉を取り出したとき, 赤玉が奇数個取り出される確 n個の袋の中に, それぞれ赤玉が1個, 白玉が9個入っている. これらn個の 練習 *** 率をとオスと次の問いに答えよ. (改)

解決済み 回答数: 1
数学 高校生

1番最後の[1][2]から、というところですが、 なぜ(-1)ⁿではなく(-1)ⁿ+¹なんですか💦

例題 28 重要 に分けて和を求める 00000 一般項がαn=(-1)"+1n2 で与えられる数列{an} に対して,Sn=ak とする。 (1) a2k-1+a2k (k=1, 2, 3, ......) を ん を用いて表せ。 (2) Sn= (n= 1, 2, 3, ......) と表される。 k=1 次のように頭を2つずつ区切ってみると Sn=(12-2)+(32-4)+(52-62)+...... =b₁ =b₂ 指針 (2) 数列{an}の各項は符号が交互に変わるから,和は簡単に求められない。」 =b3 ****** 上のように数列{6} を定めると, bk=a2k-1+αk (kは自然数) である。 よってm を自然数とすると [1] n が偶数, すなわち n=2mのときはS2m2=(-1)として求め られる。 k=1 k=1 1 [2]nが奇数、すなわちn=2m-1のときは,Sam = Sim-1+α2m より S2m12m-a2mであるから, [1] の結果を利用して Szm-1 が求められる。 このように, nが偶数の場合と奇数の場合に分けて和を求める。 (1) 2-1+a2x=(-1)2k(2k-1)^+(-1)2k+1(2k)2 =(2k-1)-(2k)=1-4k [1]=2mmは自然数)のとき m m S2m=(a2k-1+a2k)=(1-4k) =m-4. m= =1であるから Sn -m(m+1)=-2m²-m =-2(2)-=-n(n+1) [2]=2-1(mは自然数) のとき 2m+1. azm=(-1)2 '(2m)'=-4m² であるから S2m-1=S2m-a2m=-2m²-m+4m²=2m²-m n+1 m=- であるから 2 S,=2(n+1)_n+1=1/2(n+1){(n+1)-1} = n(n+1) [1],[2] から Sn=(-1)+1 2 -n(n+1) (*) (-1) =1, (-1)=-1 ={(2k-1)+2k} ×{(2k-1)-2k} S2m= (a1+a2) +(as+αs) +...... +(a2m-1+a2m) Sm=-2m²-mに 2=1/27 を代入して,n m= の式に直す。 <S2m=S2m-1+a2m を利用する。 S2m-1=2m²-mをnの 式に直す。 451 (*) [1], [2] のS” の式は 符号が異なるだけだから, (*)のようにまとめるこ とができる。 一般項がαn=(-1)n(n+2) で与えられる数列{an} に対して, 初項から第n項ま での和 S を求めよ。 1 章 ③種々の数列

解決済み 回答数: 1
数学 高校生

数Bの数列の問題です 真ん中らへんの緑マーカーの4はどこにいったんでしょうか?

例 題 B1.34 考え方) Un+1=pan+f(n) (p≠1) **** =3, an+1=3an+2n+3 で定義される数列{an}の一般項 αを求めよ. [答] 漸化式 an+1=3an+2n+3 において,を1つ先に進めて+2 と α+)に関す ある関係式を作り, 差をとって,{anti-an}に関する漸化式を導く 答 2α に加える(または引く)nの1次式pn+g を決定することにより、 {an+pn+g}が等比数列になるようにする。 10+1= 30+2n+3 ・・① より、 ante = 3an+1+2(n+1) +3 ...... ② に ①より、 mimi www www an+2-an+1=3(anan)+2l bantiman より, とおくとか考休み、 b=a-a=3a,+2+3-q=11 b+1=36+2, b₁+1=12 bw+1+1=3b"+1), したがって、数列{6m+1} は初項 12, 公比3の等比数列 だから, bm+1=12.3" =4・3" b=4.3"-1 n2のときの係数) n-1 ②は①の を代入したもの +1 差を作り”を消去 する ①より. a2=3a,+2+3=14 α=3α+2 より +m+α=-1 12.3" =4・3・3"-1 (1 12(3"-1-1) =4.3" k=1 カ=-1 3-1 (n-1) n-1 a=a+b=3+Σ(4-3-1)=3+ k=1 第8章 =6・3"-1-n-2=2.3"-n-2 n=1のとき, a1=2・3′-1-2=3より成り立つ。 よって, an=2・3"-n-2 6.3"-12・3・3-1 =2.3" 十四十 n=1のときを確認 2pg を定数とし, an+1+p(n+1) +q=3(a,+pn+g) とおくと an+1=3a+2pn+2g-pおけば an+1+pn+p+q 23=3a + 3pn +3q = もとの漸化式と比較して、 2p=2, 2g-p=3より、p=1,g=2 したがって,att(n+1)+2=3(an+n+2) 4+1+2=6=34.+2pn より,数列{am+n+2}は初項 6, 公比3の等比数列 an=2.3"-n-2a=3 an+1=pan+f(n) (f(n)はnの1次式) 差を作り, n を消去して階差数列を利用して考える +2q-p よって,an+n+2=6・32・3" より Focus 注) 例題 B1.33 (B1-63) のように例題 B1.34 でも特性方程式を使うと, α = 3α+2 +3 よ 3 ant h₁ α=-n-2 3 となる. これより, 順番になっていない と変形できるが, 等比数列を表していないので、このことを用いることはできない. +2 注意しよう [[[]] [Bl 解説参照) よって定められる数列{am}に R1

解決済み 回答数: 1
数学 高校生

数Bの数列の質問です 聞きたいことは3つあります ①(1)の緑マーカーを引いている(2×2^(n-1)-1)はどうやって出てきたのか ②(2)の緑マーカーを引いている489項はどうやって出すのか ③(2)の黄色マーカーを引いているシグマの計算のやり方 この3つを教え... 続きを読む

例題 B1.29 群数列(2) ***** 2の累乗を分母とする既約分数を次のように並べた数列について, 1 1 3 2'4'4'8'8 5 13 3 71 5 15 ...... 8'8' 161604032 (1) 分母が2" となっている項の和を求めよ.xx (2) 初項から第1000項までの和を求めよ。 手大) 考え方 分数の数列は、分母と分子に着目する. この数列では同じ分母で1つにまとめる (2, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16, 16, 16, 16, 4個 いとか考える。S-8個目番 1個 2個 となっている.つまり, 分母が同じ数である項をひとつの群と考えると、第群には、 分母が 2" の分数が 2"-1個あることがわかる.さらに,分子に着目すると、 (7) 11, 31, 3, 5, 71, 3, 5, 7, 9, 11, 13, 15 となっている 解答 (1) 分母が2である分数をまとめて第ん群とする数 列を考えると, ) 200 となり、分母が 2" の分数は 27-1個あり 11 31357 3 5 15 | 1 2 4'4 8'8'8'8 16'16'16' S1 TOS 16 32' 1個あり、分子は初 項1, 公差2の等差数列になっているから、その和 は, 等差数列の和 n(a+e) S を利用 2 どうやって出てきた 2n 2"=2"-25 (2) 各群の項数は, 1, 2, 4, 8, 16, ・・よりは、 1-(2-1) 第n群までの項数の和は、 2-1 1+3+5+・・・ +(2.2"-1-1)22-2 分子 1+3+5+...... ので、第1 +(2·2-1-1) 2"-1 (1+2・2"- '-1) 2 =2"-11022-2 第1000項が第何群に入 どうやって出す? 2°-1=511, 2-1=1023 より 第1000項は第 10群の第489項なので,求める和は第9群までの 和と第10群の第489項までの和となる -2 3 9770+ っているかをまず調べる。 1 22-2は初項 公比 224+ (2+2+1+20001027 2の等比数列の初項から 第9項までの和 よって, k=1 びじゃないのに 1 (29-1) F どうやって計算? 11 + .489.(1+977) 2-1 2102 511 4892 500753 より 初項 1.末項 977, = ++ 2 1024 1024 2月1 Focus 分数の群数列は分母, 分子に着目して見抜く 1+3+...... +977 は, 項数 489 等差数列の和 **) ついて、

解決済み 回答数: 1
数学 高校生

数Bの数列の問題です この問題はなにを求めるのかがよく分かりません めちゃめちゃ初歩的な事だと思うんですけど教えていただけると嬉しいです!

B1-48 (518) Think 例題 B1.27 いろいろな数列の和(2) S„=1−22+32-4°+....+(-1)" を求めよ **** nが偶数か奇数かで [考え方 S, は数列 am=(-1)*+1㎡の初項から第n項までの和であるが、n その和を分けて考える必要がある nが偶数、つまり、n=2mmは自然数のとき, 解答 Szm=1-2°+3°-4++ (2m-1)-(2m) 第2m =(12°)+(32−4°) ++{(2m-1)−(2m)} nが奇数,つまり,n=2m+1のとき wwwwwwwwwwwwww 第 3 項 Szm+1=12-2+32-4++ (2m-1)-(2m)+(2m+1)2 t -第 (2m+1) 項 =(1-2)+(3-4)+…+{(2m-1)-(2m)}+(2m+1)2 FL m III wwwwwww nが偶数のとき, n=2mmは自然数) とおくと, S=S2m=(12−22)+(32-4) +... +{ (2m-1)-(2m)2} wwwwwwwwwwww m m ={(k-1)-(2k)}=2(-4k+1) k=1 k=1 =-4 4.1.2m(m+1)+m=-m(2m+1) 2m(+1)+ n=2mより,m=nを①に代入して, == …② n=2,4,6, 数列 {(2m-1)²-(2m) の初項から第 m項ま での和と考える. ...① me 和はnで表す. になる。 -2m-m mm1 nが奇数のとき, n=2m+1(mは自然数) とおくと, wwwwwwww Sn=S2m+1=(1²-22)+(3²-4²)+) (+)(-s)- +{(2m-1)-(2m)2}+ (2m+1)^ =S2m+(2m+1)=-m(2m+1)+(2m+1)^ =(m+1)(2m+1) _1. ③ n=2m+1 より,m=1/2(n-1) ③に代入してxs S=(1/n+1/2)(n-1+1)=1/2m(n+1) ④は n=1のときも成り立つ n=3,5,7, 塩だなあない場合 x(E- (x)= よって、②より,S,=(-1)+1.1 S=(-1)+(n+1) Focus n=1 とすると, 11/21.2=1 場合分けした②④ の形のままでもよい。 が偶数の場合と奇数の場合に分けて考える S2m+1=S2m+a2+

解決済み 回答数: 1
数学 高校生

F1a-158 ①(2)の解説のピンクの蛍光ペンを引いたところがわかりません。 ②①の質問とかぶるところがあるかもしれないのですが、約数の個数の求め方は公式を覚えてるので解けるのですが、なぜ素因数分解したらそれを元に総和が分かって、左の表のようになるのですか?表がよく分か... 続きを読む

例題 158 約数の個数 男の金 **** (1)(a1+az)(bi+b2+ba+ba) (ci+C2+ca) を展開すると,異なる項は何 個できるか. X2200の約数の個数とその総和を求めよ.また,約数の中で偶数は何 個あるか ただし, 約数はすべて正とする. 考え方 (1) (α)+α2)(b)+b2+bs+ba) (Ci+C2+c3) たとえば, (a1+a2)(by+b2+bs+bs) を展開してできる arb に対して, a*bi (Cr+C2+cs) の展開における項の個数は3個である (a1+az)(bi+b2+bg+b4) を展開するとき, abı のような項がいくつできるか考 えるとよい. (2) 1か2か2か23 × 1か5か52 であるが, (1+2+2+2°)(1+5+5)を展開すると、 1×1, 1×5, ②×14×1, 8×1, ②×54×5,8×5, 1×25, 2×254×25,8×25 がすべて一度ずつ現れる.したがって,約数の総和は,次のようになる。 (1+2+4+8)×1+(1+2+4+8)×5+ (1+2+4+8)×25 =(1 + 2 + 4 + 8 ) ( 1 +5 +25) 200=2×52 より,約数が偶数になるのは,1以外の23の約数を含むときであるか ら、2か22か2を含む約数の個数を求めればよい. a1, a2の2通り bi, 62, 63, b4 の4通り 例題 60 求め 「考え方 解答 (1) (a1+a2)(b1+b2+63+64) を展開してできる項 の個数は、2×4(個)である。 〇のこと のこと また, (a1+a2)(61+62+63+64) の1つの項 ab に対して, てかける 日数は序数+a*bi(c+cz+C3)010 off よって, 求める項の個数は, (2)200 を素因数分解すると, (3+1)×(2+1)=12 の C1, C2 C3の3通り の展開における項の個数は3個である. 2×4×3=24 (個) 200=23×52 積の法則 より、約数の個数は, 12個 1 21 22 23 また、約数の総和は, 11.1 (1+2+2+2)(1+5+52)=465 100 2.122-1 23-1 51 15 251 2% 51 2°•5' また, 偶数の約数は, 2か22か2を含むもの だから, ・5,52, 3×2+1=9 かけたやっ 52 1.52 2.52 2.52 23•52 偶数になるのは, 1 以外の 2'の約数を含むとき より, 偶数の約数の個数は, 9個 Focus 合 約数の個数は,素因数分解し、 積の法則を利用する 数個数は,素因数分解し、積の法則を利用する 用 a × 6° Xc" の約数の個数は,(n+1)(g+1)(n+1)個 (a,b,cは素数)

解決済み 回答数: 1
数学 高校生

(3)がわかりません、先生の解答と私の回答を添付しました a+3/2 < a+1 と a+3/2 ≧ a+1をなぜここで使ってくるのかがわかりません 解説よろしくお願いします🙇

習 【数と式 ⑤】 ★★★ 2次方程式2-(3a +5)x+a^+4a+3=0 ① (aは定数)がある。 (1) x=-1が方程式①の解であるとき,aの値を求めよ。 (2) 方程式①の解をαを用いて表せ。 1年間の総復習 【2次関数 ④ 放物線y=x4ax+2b...... ①がx a,bは定数とする。 (1) 放物線①の頂点の座標を求めよ。 (3) 方程式①の解がすべて, 不等式3a-5<2x < 3g+5 を満たすxの範囲内にある (2) 放物線 ①が点 ときの値の範囲を求めよ。 (1) ニートが解より代入 2(リー(3a+5)(-1)+a2+4a+3=0 2+3a+5+aziqa+3=0 Q:70+10-0 ・a=-2,-5 (11/16)を通るとこ 4'16 さらに, AB=2√5であるとき、 難 (3) 2点A、Bのx座標がともに0x めよ。 このとき, A. Bのx座標を うな整数の値を求めよ。 y=(x-243-4a2+21 (a+2) (a+5)=0 (2) 頂点(20-4026 ①がx軸と異なる2点 で交わっているので (2) 2-(a+3)→-a-3 2x²-(3a+5)x+(a+1) (a+3)=0 {x-(a+3)}{x-1)}=0 B) X = Q+3 atl 2 / 30-52x<3a+s (1) a+3 2 30-5 くく < atlaとはすなわち かつ a+3 atl<30+5 -② 1X-(a+1)→2a-2 -39-5 at3 ②とatは 大平関係はまだわから ない。0,10,-10 a+3c2a+2 ①が(本店)の代入 このと = -40 * +2b 2b=aよって b=/2/20 b<2087 Jacza 4a²-a> o 0140-1)>0 · a<o. <a⋅ (3)チス=400+2 fon= (x-a4a alaとき ここで、 軸x=2a SCRE ①、②aっしょり ①より 30-5913 at 3a75 J 134-50+3 2ac8 a<4-0' ②より 20+2c3a+s a2-3-②' -3 kack (l) a+3 12 ≧ atlaときすなわちa+3≧20+2 30<a+1 -③ 2 かつ a≦1のとき 2 ②より 3a-52a+2 a7-③ 8 0 fu fis ③-40+2b< b<za² ④ 02a8 019<4 26:0 b>o- ⑥564-32a+26 →a b16a- 39-5 +1 +336+5 ④からQ ③1 ④ry a+3<3a+5 7 07-115 -1<0≤1 a=1, 9組のう 満たすの Q=3

解決済み 回答数: 1