学年

教科

質問の種類

数学 高校生

この問題の8C7は分かるけど、8C8の意味がよく分かりません、、教えてほしいです🙇‍♀️🙇‍♀️

げた こと ると → 仮 さい 実験 補充 例題 157 反復試行の確率と仮説検定 00006 箱の中に白玉と黒玉が入っている。 ただし, 各色の玉は何個入っているかわ からないものとする。 箱から玉を1個取り出して色を調べてからもとに戻す ことを8回繰り返したところ,7回白玉が出た。 箱の中の白玉は黒玉より多 いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし て考察せよ。 CHART & SOLUTION 「箱の中の白玉は黒玉より多い」 という主張に対して,次の仮説を立てる 基本 155 61 仮説 白玉と黒玉は同じ個数である そして、仮説, すなわち, 箱から白玉を取り出す確率がであるという仮定のもとで7回 1 2 以上白玉を取り出す確率を求める。なお、箱から玉を取り出してもとに戻すことを8回繰 り返すから, 反復試行の確率 (数学A) の考え方を用いて確率を求める。 反復試行の確率 1回の試行で事象Aの起こる確率をとする。この試行をn回行う反復試行で,A がちょうど回起こる確率は nCrp (1-p) ただし = 0, 1, ......,n なお, Cr は異なるn個のものから異なる個を取り出して作る組合せの総数である。 5章 答 19 箱の中の白玉は黒玉より多い [1][ の主張が正しいかどうかを判断するために,次の仮説を立て 果の る。 仮説 箱の中の白玉と黒玉は同じ個数である [2] [2] の仮説のもとで,箱から玉を1個取り出してもとに戻す ことを8回繰り返すとき, 7回以上白玉を取り出す確率は C(1/2)^(1/2)+.C.(1/2)^(1/2)-12/(1+8)=2536 9 = 0.035······ ◆黒玉を取り出す確率は これは 0.05 より小さいから, [2] の仮説は誤りであると考え られ, [1] は正しいと判断できる。 1-12-12 である。 00 仮説検定の考え方 したがって, 箱の中の白玉は黒玉より多いと判断してよい。 inf条件が 「8回繰り返したところ, 6回白玉が出た」 であるなら, 6回以上白玉を取り出す確率は C(1/2)^(1/2)+C(1/2)^(1/2)+nCd(1/2)^(1/2)2-12/21 (1+8+ (1+8+28)= -=0.144...... 37 256 これは 0.05 より大きいから, 白玉は黒玉より多いと判断できない。 [2] の仮説は棄却されない。 なお、白玉を取り出す回数をXとすると, [1] の主張が正しい, つまり、白玉は黒玉より多いと 判断できるための範囲は、例題の結果と合わせて考えると,X≧7 である。 PRACTICE 157° AとBがあるゲームを10回行ったところ,Aが7回勝った。この結果から,AはB より強いと判断してよいか。 仮説検定の考え方を用い, 基準となる確率を0.05 とし

解決済み 回答数: 1
数学 高校生

分数関数の問題です。 (2)がわかりません。 自分の回答だと、x<-5が含まれていますが、回答にはありません なぜ、-5<x<-3なのでしょうか?

|赤 ● ● 分数 基本 1 基本例題 3 本 2 (1) 関数y= x+3 のグラフと直線 y=x+4 の共有点の座標を求めよ。 0000 (2) 不等式 指針▷ (1) 2 <x+4 を解け。 x+3 共有点 実数解 すなわち, 分数関数のグラフと直線の式からyを消去し た方程式 2 x+3 x+4の実数解が共有点のx座標である。 (2) 不等式f(x)<g(x)の解⇔y=f(x) のグラフがy=g(x)のグラフより下 グラフを利用して解を求める。 にあるようなxの値の範囲 ......... なお、分数式を含む方程式・不等式を分数方程式・分数不等式という。分数方程式・分 数不等式では,(分母)0 というかくれた条件にも注意が必要である。 HART 分数不等式の解 グラフの上下関係から判断 解答 2 y= ...... ①, y=x+4 x+3 ② とする。 + 2 (1) ①,② から y =x+4 x+3 4 両辺に x+3を掛けて -4 ---2 ◆y を消去。 2次方程式に帰着される ただし, (分母) ( すなわ ちxキー3という条件がか くれている]。 -3 -20 x -1 2=(x+4)(x+3) 整理して ゆえに = 0 x2+7x+10 (x+2)(x+5)=0 (1) よって x=-2, -5 ② に代入して x=2のとき y=2, 2,-5は -の分 2 x+3 x=-5のとき y=-1 したがって, 共有点の座標は (-2, 2), (-5, -1) 母を0としないから、方程 2 x+3 -=x+4の解である。 (2) 関数 ① のグラフが直線②の下側 にあるようなxの値の範囲は,右の 図から -5<x<-3,-2<x ①yA (1) のグラフを利用。 x≠-3に要注意! 注意 グラフを利用しないで, 代数的 に解くこともできる。 この方法は次 「ページで学習する。 O x x=-3は, 関数 ① の定義 域に含まれない(つまり、 グラフが存在しない)。 練習 ②3 (1) (2)不等式4-22 のグラフと直線y=5x-6の共有点の座標を求めよ。 (2) 不等式 4x-35-6 を解け。

解決済み 回答数: 1
数学 高校生

なぜ第1象限で接したとき最大なのですか?

x, 2 領域と分数式の最大・最小 yが2つの不等式 x-2y+1≦0, x2-6x+2y+3≦0 を満たすとき, |最大値と最小値, およびそのときの x, yの値を求めよ。 y-2 y-2 x+1 の ・基本 122 連立不等式の表す領域Aを図示し, 指針 x+1 =kとおいたグラフが領域 Aと共有点をも つようなんの値の範囲を調べる。 この分母を払ったy-2=k(x+1) を通り,傾きがんの直線を表すから、傾きんのとりうる値の範囲を考えればよい。 (1,2) CHART 分数式 y-b 最大 最小 y-b x-a =kとおき, 直線として扱う x-a x-2y+1=0 ①, x2-6x+2y+3= 0 2 YA 解答とする。連立方程式①,②を解くと P (x,y)=(1,1) (4,212) 5 ② -=kとおくと ゆえに、連立不等式x-2y+1≦0, x2-6x+2y+3≦0 の表 す領域 Aは図の斜線部分である。 ただし, 境界線を含む。 y-2 3 (3 2 2 y-2=k(x+1) (3) RY x+1 すなわち y=kx+k+2 ③は,点P(-1,2)を通り, 傾きがんの直線を表す。 図から, 直線 ③が放物線 ②に第1象限で接するとき この値は最大となる。 ② ③からyを消去して整理すると x2+2(k-3)x+2k+7=0 このxの2次方程式の判別式をDとすると D 4 =(k-3)2-1 (2k+7)=k-8k+2 直線 ③が放物線 ②に接するための条件はD=0であるか ら, k2-8k+2=0 より k=4±√14 第1象限で接するときのkの値は k=4-√14 このとき、接点の座標は (√14-1, 4√14-12) k(x+1)-(y-2 = 0, x=-1, y=2のときん についての恒等式になる。 →kの値に関わらず定 点 (1,2)を通る。 k=4+√14 のときは, 第3象限で接する接線と なる。 次に,図から直線 ③が点 (1, 1) を通るとき,kの値は最 小となる。このとき k= 1-2 = -1/ Ak= y-2 ソニに代入。 1+1 よって 2 x=√14-1, y=4√14-12 のとき最大値 4-√14; x = 1, y=1のとき最小値- x+1 0r2+4x-y+2≦0 を満たすとき の最大値 x-2 201 3章 1 不等式の表す領域

解決済み 回答数: 1
数学 高校生

数Ⅱ黄チャート基本例題85、PR85で質問です どちらも3点を通る円の方程式を求めよという問題なのですが、基本例題とPRで解き方が違うので、使い分けがあるのかを知りたいです。 また、授業では基本例題の解き方しかやっていないので、PRの解き方も解説してほしいです。 長くなりま... 続きを読む

0 本 例題 85 円の方程式の決定 (2) 00000 3点A(3,1),B(6, 8), C(-2,-4) を通る円の方程式を求めよ。 p.138 基本事項 1 141 CHART & SOLUTION 3点を通る円の方程式 一般形 x2+y2+x+my+n=0 を利用 ① 一般形の円の方程式に, 与えられた3点の座標を代入 2 1,m,nの連立3元1次方程式を解く。 基本形を利用しても求められるが, 連立方程式が煩雑になる。 垂直二等分線の利用 3 求める円の中心は, ABC の外心であるから, 線分AC, BC それぞれの垂直二等分線の 交点の座標を求めてもよい。 12 解 求める円の方程式を x2+y2+lx+my+n=0 とする。 点A(3, 1) を通るから ←一般形が有効。 32+1+37+m+n=0 点B(6, -8) を通るから 62+(-8)2+61-8m+n=0 点C(-2, -4) を通るから (-2)^(-4)2-21-4m+n=0 整理すると 31+m+n+10=0 61-8m+n+100=0 2 円と直線,2つの円 21+4m-n-200 これを解いて l=-6,m=8, n=0 (第1式)+(第3式)から 1+m-2=0 (第2式) + (第3式) から 21-m+20=0 よって 3/+18=0 など。 よって, 求める円の方程式は x2+y^2-6x+8y=0 [別解 △ABCの外心Dが求める円 の中心である。 yA A /② 0 x 線分 AC の垂直二等分線の方程式は 中心D C 3 =-x- 線分ACの すなわち y=-x-1・・・・・・ ① 線分 BC の垂直二等分線の方程式は B 傾き1 y+6=2(x-2) すなわち y=2x-10 ② ①,②を連立して解くと x=3,y=-4 線分 BC の 中点 (2, -6), よって, 中心の座標はD(3,-4), 傾き - 12 半径は AD=1-(-4)=5 ゆえに求める円の方程式は (x-3)2+(y+4)²=25 RACTICE 85Ⓡ ② 3点 (4-1) (6, 3), (-3, 0) を通る円の方程式を求めよ。

解決済み 回答数: 1
数学 高校生

数2の直線の方程式です。 y=ax+bの式に代入して連立方程式にしても解けると思うんですが、なんでこんな公式があるんですか?!

122 基本 例題 70 直線の方程式 次の2点を通る直線の方程式を求めよ。 (1) (3,-2), (4, 1) (3) (-2, 3), (-2,-5) CHART & SOLUTION 00000 (2) (4, 0), (0, 3) (4) (-3, 2), (1, 2) p.120 基本事項 異なる2点(x1, 1), (X2, yz) を通る直線の方程式 [1] X1 X2 のとき [2] x1=x2 のとき x=x1 [解 Ante 合 (1) y-(-2)=1-(-2) 2(x1) x2-x1 交 4-3 (x-3) / (1) すなわち y+2=3(x-3) よって y=3x-11 3 1 310 (2) y-0-3-0 (x-4) 0 4 x Ea 3 よって y=-2x+3 (3) x座標がともに-2であるから x=-2 (4) y座標がともに2であるから y=2 Stixol YA [int 公式 [1] yy=12-11(x-x) の X2-X1 両辺に X2-x1 を掛けて (y2-y₁)(x-x1) -(x-x1)(y-1)=0 x= x2 とすると (y2-y₁)(x-x1)=0 yyであるから x=x (公式 [2]) (3)3 (4) 2 -2 ! よって, * は公式 [1] [2] -3 0 1 x をまとめたものである。 (p.120 基本事項 1③) -5 POINT a≠0, b=0 のとき, 2点 (α, 0), (0, 6) を通る直線 lの方程式は b-0 y-0= (xa) すなわち + 1/2=1 0-a a b ya このとき, αを直線lのx切片, bを直線lの切片という。 (2) は,これを公式として用いてもよい。 0 a b 全で ための PRACTICE 70° 次の直線の方程式を求めよ。 (1) 点 (35) 通り,傾きが√3 (3)2点 (5,1) (3,2)を通る (5)2点(-3,1) (-3, -3) を通る Ja,0)s(s) (2)2点 (5-3), (-7, 3) を通る (4) 切片が4, y切片が2z (6)2点 (1-2) (-5-2) を通る x

解決済み 回答数: 1
数学 高校生

(2)なのですがなぜ<ではなく≦なのでしょうか? Aの範囲も含んで良いのですか? よろしくお願いいたします。

を 490. 基本 例題 38 (ア) ANB (イ) AUB (1) 次の集合を求めよ。 (2) ACCとなるんの値の範囲を求めよ。 2→3→△ 実数全体を全体集合とし, A={x|-2≦x<6}, B={x|-3≦x<5}, C={x|k-5≦x≦k+5}(kは定数) とする。 不等式で表される集合の歌 00000 は 370 370 470 B479 AUB 68 基本事項 1 CHART & SOLUTION 不等式で表された集合の問題 数直線を利用 集合の要素が不等式で表されているときは、集合の関係を数直線を利用して表すとよい。 その際,端の点を含む(≦, ≧)ときは● 含まない (<, >) ときは○ で表しておくと,等号の有無がわかりやすくなる (p.55 参照)。 例えば,P={x|2≦x<5} は右の図のように表す。 2 5 x 解答 (1) 右の図から (ア) A∩B={x|-2≦x<5} (イ) AUB= {x|-3≦x<6} (ウ) B={x|x<-3,5≦x} (エ) AUB={xlx<-3, -2≦x} (2)ACCとなるための条件は -B- -B- -3-2 56 x 2章 補集合を考えるとき 端の点に注意する。 〇の補集合は ● ●の補集合は○ 5 集 集合 C ・A k-5-2 ① k=1のとき x 6≦k+5 C={x|-4≦x≦6} (2 k-5-2 6 k+5 が同時に成り立つことである。esk=3のとき C={x|-2≦x≦8} UB ①から k≦3 ②から 1≦k であり、ともにACC 共通範囲を求めて 1≦k≦3 を満たしている。 8=0

解決済み 回答数: 1
数学 高校生

(2)の問題が解説見てもわからなくて、教えてほしいです🙇‍♀️

(1)正四面体に外接す 2) 正四面体に内接する球の半径をα を用いて表せ。 CHART & SOLUTION (1)基本例題138と同様に,頂点Aから底面△BCDに垂線 AH を下ろす。 外接する球の中心を0とすると, 類 神戸女 ◎基本 ( 重要例 1辺の を, A (1)線 (2) S CHAR AD=C 2次関 (1) D OA=OB=OC=OD(=R) よって、直角三角形OBH に着目して考える。 である。また, 直線AH 上の点Pに対して, PB=PC=PD であるから, 0は直線AH 上にある。 B (2) 内接する球の中心を I とすると, Iから正四面体の各面に 下ろした垂線の長さは等しい。 正四面体をⅠを頂点とする 4つの合同な四面体に分けると, 体積は 四面体 IABC, A 正四面体=4×(四面体 IBCD) IACD, IABD, IBCD これから, 半径を求める。 B (例題 136 で三角形の内接円の半径を求めるとき,三角形を つの三角形に分け、面積を利用したのと同様。) HASE HBAC khe (1) 頂点Aから底面 △BCD に垂線 AH を下ろし、外接する 球の中心を0とすると, 0 は線分AH上にあり ←AH=6 3 -a, BH= OA=OB=R は基本例題 138 (1) の ゆえに OH=AH-OA= √6 03 果を用いた。 a-R A 3 よって △OBHで三平方の定理から 2 BH2+OH2=OB2 (3)²+(√a-R)²=R² すなわち - 2√6 3 -αR=0 ゆえに R=- 3 √6 a= 2√6 4 a B (2) 内接する球の中心をIとする。 4つの四面体 IABC, IACD, IABD, IBCD は合同であるから V=12 V=4×(四面体IBCDの体積)=4 (13△BCD・ 1.13 = 4.1. √3a²• r = √3a²r =4• 123から 3 √2 = 12 √3 a²r よって r=- a 12 PRACTICE も (2) S 解答 AD= (1) (2 V=12 12 138(2)の針用 -αは基本例題 F

解決済み 回答数: 1
数学 高校生

2番は直ぐに-1と出しちゃダメなんですか?

(1) 不等式α(x+1)> x+αを解け。ただし,αは定数とする。多く (2) 不等式 ax<4-2x<2xの解が1 <x<4であるとき,定数αの値を求めよ。 [(2) 類 駒澤大 ] ・基本 34 重要 99 指針 文字を含む1次不等式 (Ax>B, Ax <B など) を解くときは,次のことに注意。 ←一般に,「0 で割る」と •A=0 のときは,両辺を4で割ることができない。 ・4<0 のときは、両辺を4で割ると不等号の向きが変わる。 いうことは考えない。 (1) (a-1)x>a(a-1) と変形し, a-1>0, a1=0, a-1<0の各場合に分けて解く。 と同じ意味。 (2) ax<4-2x<2xは連立不等式 ax <4-2x 4-2x<2x (B) まず,Bを解く。 その解と A の解の共通範囲が1<x<4となることが条件。 CHART 文字係数の不等式 割る数の符号に注意 0で割るのはダメ! (a-1)x>a(a-1) (1) 与式から (1) 解答 [1] α-1>0 すなわちα>1のとき x>a >x [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 ①は 0x>0 [3] α-1<0 すなわち α <1のとき α>1のとき x>a, x<a よって a=1のとき 解はない, α <1のとき x<a (2) 4-2x<2x から -4x <-4 は まず, Ax>Bの形に。 ①の両辺をα-1 (>0) で割る。 不等号の向きは 変わらない。 <0> 0 は成り立たない。 負の数で割ると不等号 の向きが変わる。 晶検討 よって x>1 A=0のときの不等式 Ax>Bの解 ゆえに,解が1 < x < 4 となるための条件は, ax <4-2x ①から ① の解が x <4 となることである。 (a+2)x < 4 (2) [1] α+2>0 すなわち α> - 2 のとき ②から 4 x< よって a+2 ゆえに 4=4(a+2) よって 4 a+2 a=-1 =4 これはα>-2を満たす。 [2] α+2=0 すなわち α=-2 のとき,②は 0x4 = 0 のとき, 不等式は よって 0x >B B≧0 なら 解はない B<0 なら 解はすべての 実数 両辺にα+2 (≠0) を掛 けて解く。 よって,解はすべての実数となり, 条件は満たされな い。 [3] α+2<0 すなわち α <-2 のとき,②から 4 x> a+2 このとき条件は満たされない。 [1]~[3] から a=-1 04は常に成り立つか ら、 解はすべての実数。 x<4と不等号の向きが 違う。

解決済み 回答数: 1
数学 高校生

この問題の(1)の解説の、√2/√3a²がどうやって√6/3aになったのかがわかりません、、教えてください🙇‍♀️

を 141 基本 例題 138 正四面体の高さと体積 1辺の長さがαである正四面体 ABCD がある。 (この正四面体の高さをαの式で表せ。 (2)この正四面体の体積をαの式で表せ。 CHART & THINKING 空間図形の問題 平面図形 (三角形) を取り出す 0000023 基本137. 重要 139 (1) 頂点Aから底面 BCD に垂線 AH を下ろすと,AH が正四面体の高さとなる。AHを 求めるために、どの三角形を取り出せばよいだろうか? AB=ACAD であることに, まず注目しよう。更に,点HはBCDのどのような位置にあるかを考えよう。 (2) 四面体の体積の公式において, (1) で求めた「高さ」に加えて何を求めればよいかを判断 しよう。 解答 (1) 正四面体の頂点Aから底面 △BCD に垂線AH を下ろすと, AB=AC=AD であるから △ABH=△ACH=△ADH よって BH=CH=DH D B ゆえに、点Hは BCD の外接円の 中心で,外接円の半径はBH である。 よって, BCD において, 正弦定理により 1 a a BH= = 2 sin 60° 3 したがって AH=√AB2-BH= = a². 2 a a A (1) AABH, AACH, △ADH は,斜辺の長さ がαの直角三角形でAH は共通辺である。 直角三角形において, 斜 辺と他の1辺が等しいな らば互いに合同である。 CD sin DBC -=2R CD=α, <DBC=60° △ABHに三平方の定理 を適用。 4章 15 三角形の面積、空間図形への応用 2 √6 = 3 3 a ? B a H (2) BCD の面積は a.a sin 60°- よって、 正四面体 ABCDの体積は √3 = a² 4 4 1/13 = ABCD AH-1√361 /2 a= 3 3 4 12 RACTICE 1383 ABCD の面積 -BD・BCsin∠DBC (四面体の体積 ) =113×(底面積)×(高さ)

解決済み 回答数: 2