学年

教科

質問の種類

数学 高校生

仮説検定の問題で考察しよと書いているのは 証明のような文もいるということですか? 判断できるできないだけでいいのですか? すみません、仮説検定の意味がよくわかっていなくて 変な質問かもしれませんがお願いします。

98 第5章 29 仮説検定の考え方 例題 仮説検定の考え方 104 あるさいころを30回投げたところ、 1の目が1回しか出なかった。 このさいころは1の目が出にくいと判断してよいか。 仮説検定の考え 方を用い, 基準となる確率を0.05 として考察せよ。 ただし, 公正なさ いころを30回投げて1の目が出た回数を記録する実験を300セット 行ったところ、次の表のようになったとし, この結果を用いよ。 1 2 3 4 5 6 7 8 9 10 11 計 1の目が出た回数 0 度数 1 8 22 41 55 58 48 33 19 9 4 2300 解答 [1] 1の目が出にくい と判断してよいかを考察するため, [1] の主張に反する次の仮定を立てる。 [2] どの目が出ることも全くの偶然で起こる 18. 89 公正なさいころの実験結果から, 1の目が出た回数が1回以下である場合の相 対度数は 1+8 9 300 1300 -=0.03 これは 0.05より小さいから, [2] の仮定は正しくなかったと考えられ, 主張 [1] は正しいと判断してよい。 すなわち, 1の目が出にくいと判断してよい。 26 K

回答募集中 回答数: 0
数学 高校生

数学Bの問題です。 至急です。明日の朝までにお願いしたいです。 フォローベストアンサーします。 よろしくお願いします。

2 <知・技≫ある工場では, お菓子1袋の重さが平均100g,標準偏差 6g の正規分布に従うように製造してい る。この工場で製造されたお菓子を25袋購入して調べたところ, 平均は103gだった。 この結果から 「お菓 子の重さの平均は100g でない」 と判断できるかを有意水準 5% で仮説検定したとき, 製造されるお菓子の 母平均をmとして、次の問に答えなさい。 (1) 次の空欄を埋めなさい。 帰無仮説は「m= ① 」, 対立仮説は 「m≠ ① 」 であり, 帰無仮説が正しいとすると, 標本平均 X の分布は正規分布 N (2) とみなせる。 (2) 標本平均が103 であるとき, (1) の X を標準化した確率変数Zの値の絶対値 | 2| を求めなさい。 ※小数で答えなさい。 (2)において,確率 P (|≧|z|) を求めなさい。 ※小数点以下の数の並びを5桁で答えなさい。 P(|≧||)=0. ア. 1~2000 イ. 2001~4000 ウ. 4001~6000 エ 6001~8000 オ.8001~10000 力. 10001~12000 キ, 12001~14000 (4) 仮説検定の結論について,空欄に入る語句を選び, 記号で答えなさい。 (3) の確率は,有意水準 5% よりも①ア.大きい, イ. 小さいから, 帰無仮説は棄却され ② ア.る。 イ.ない。 したがって, 「お菓子の重さの平均は100g でない」 と 3③ ア.いえる。 イ.いえない。 思・判・表〉 14000 人の生徒に対して, 数学と英語の試験を実施した。 数学の点数を X, 英語の点数をYと し、試験の点数は正規分布に従うと考え、 次の問に答えなさい。 (1) 数学の平均点が 66.2 点, 標準偏差が15.0点であった。 数学の点数が80点以上となる確率P(X≧80) を求めなさい 空欄に入る小数点以下の数の並びを5桁で答えなさい。 P(X≧80) = 0. (2) ① 数学の点数が80点であった生徒の順位はどの範囲にあるか, ② 数学の点数が59点であった生徒の順位はど の範囲にあるか、次の選択肢から1つずつ選び, 記号で答えなさい。 【選択肢】 (3) 英語の標準偏差は16.0 点であったが, 平均点が発表されなかったため、無作為に196人選び, 平均点m を推定し た。 196人の平均点が63.5点であったとき, 196人の点数を十分に大きな標本と考えてm に対する信頼度95% の信頼区間を求めなさい。 小数第二位を四捨五入して答えなさい。 信頼区間: ① ≦m≦ ②

回答募集中 回答数: 0
数学 高校生

数Aの仮説検定の説明なのですが、何を言っているかが全く理解できなかったため、解説をお願いしたいです。 よろしくお願いします。

154205 A x ③ 仮説検定 ・仮説検定の考え方 サッカーの試合の勝敗予想がよく当たるという猫に, あるトーナメント戦の勝敗を予想さ せたところ,30試合中21試合が的中した。 この結果から,この猫の予想は本当によく当た ると判断してよいだろうか。 ORI+ATE+2s OT 201 + 0) 仮に,この猫の予想がでたらめであった(勝敗をそれぞれ1/2の確率で予想した)とすると, coraraa 21 試合以上で的中する確率は約2.1%である。 (確率は6章「場合の数と確率」で学ぶ。) 起こる確率が5%未満である事象を,ほとんど起こり得ない事象と考えるとすると,「でた JOU らめで予想している」という仮説のもとではほとんど起こり得ない事象と考え、仮説を否定 して「この猫の予想はよく当たる」 と判断することができる。 一方、この猫の予想が30 試合中 19 試合で的中した場合を考えてみよう。 でたらめで予想して, 19試合以上で的中する確率は約 10.0%であり、 「この猫の予想はよ く当たる」 と判断できるだけの根拠が得られないため, 「でたらめで予想している」 という 20 仮説を否定できない。 ただし, これは、でたらめかそうでないかについて判断できないこと を意味し, 「この猫の予想はよく当たるとはいえない」と結論づけることはできない。 317

未解決 回答数: 0