学年

教科

質問の種類

数学 高校生

この赤枠のところの、両辺に16をかけるのは何故ですか? 教えて欲しいです!

[大阪産大〕 基本 113 CHART & SOLUTION 三角比の計算 かくれた条件 sin20+cos'0=1 を利用 かくれた条件 sin'0+cos20=1 tan の値は sino, cose の値がわかると求められる。 そこで を利用して, sino, cose についての連立方程式 4cos0+2sin0=√2, sin20+cos20=1 を解く。 → cose を消去し, sin0の2次方程式を導く。 解答 4cos0+2sin0=√2 を変形して 4cos0=√2-2sin sin20+cos20=1の両辺に 16 を掛けて 16sin20+16cos20=16 ①を②に代入して 16sin20+(√2-2sin0)²=16 10sin20-2√2 sin0-7=0 4cos0 +2sin=√2 4章 (2) を条件式とみて、条件式 は文字を減らす方針で COS を消去する。 13 三角比の拡張 整理して さ ここで, sin0=t とおくと 10t2-2√2t-7=0 これを解いて t=- √2 ± 6√2 ( (*) 10 よって t=-1 √2 7√2 2' 10 0° <0 <180°であるから 0<t≤1 これを満たすのは 7/2 t= 10 すなわち sin0= 7√2 10 ①から 4 cos 0=√2-2-- 7/2 2√2 10 5 ゆえに cos 0=√2 10 sine 7/2 √2 したがって tan 0=- =-7 Cos 10 10 (*) 2次方程式 ax2+26'x+c=0 の解は x=- - b' ±√b^2-ac a int sin 0, cos0 どちらを 消去? sin を消去して coseに ついて解くと, 0°<0 <180° から cos = √2 √2 2' の2 10 つが得られるが, √2 cos 0=- のときは 2 sin0 <0となり適さない。 この検討を見逃すこともあ るので, cose を消去して, 符号が一定 (sin0 > 0) の sin を残す方が, 解の吟味 の手間が省ける。 PRACTICE 1160 0°≦0≦180°の 0 に対し,関係式 cose-sino=1/23 が成り立つとき,tanøの値を求 めよ。

解決済み 回答数: 1
数学 高校生

数学 一枚目が問題と解答で二枚目が自分の考えなのですが、解答は微分で考えてて自分は判別式で考えて答えは同じなのですが、いいのでしょうか?

要 例題 176 2 曲線が接する条件 「共 00000 2つの放物線y=x2 と y=(x-α)2 +2 がある1点で接するとき、定数α の値を求めよ。 CHART & SOLUTION [類 慶応大] 基本174 重要 177 2曲線y=f(x), y=g(x)がx=p の点で接する条件 f(b)=g(カ)かつf'(b)=g'(p) 「2曲線が接する」 とは, 1 点を共有し、かつ共有点における接線 が一致すること(この共有点を2曲線の接点という)。 接点のx座標をとおいて 接点を共有する ⇒f(b)=g(b) 接線の傾きが一致するf'(b)=g' (b) を満たすαの値を求めればよい。 解答 f(x)=x2, g(x)=(x-a)2 +2 とすると f'(x)=2x, g'(x)=-2x+2a 2曲線が1点で接するとき, その接点のx座標をとすると f(p)=g(カ) かつ f'(b)=g'(p) y=f(x)/ y=g(x) p x g(x)=(x-a)2+2 =-x2+2ax-a2+2 f(p)=g(p) が成り立つ。 接点のy座標が一致 よって2=(p-a)2+2 ① *S=V f'(p)=g'(p) Ch 2p=-2p+2a ② 接線の傾きが一致 ②から a=2p ③ 意味する これを①に代入してp=-(p-2p)+2 ゆえに P2=1 ③から,αの値はのと為 p=1のとき -2) これを解いてえにか=±10 α=-2, p=1 のとき a=2 式は a=-2 ly=f(x) 2=2+2から inf. 接点の座標は 275 xa=-2 のとき (-1, 1) y=f(x)+α=2 のとき (1,1) 接線の方程式は 左=2のとき y=-2x-12 x +a=2のとき -10 x の。 01 DS 方 y=g(x) y=g(x) 上の数 以上の 関数 方針 となり、方針図が開範囲が広いことが BACTICE 1769 .0=v - 1,0=D y=2x-1 24010

解決済み 回答数: 1
数学 高校生

黄チャートの数Iの例題65の問題で、赤の線で引いているところがわかりません。解説よろしくお願いします🙇‍♀️

α は定数とする。 a= めよ。 CHART & SOLUTION 定義域全体が動く場合の2次関数の最大・最小 大 軸と定義域の位置関係で場合分け 1=(S)=(0)\ 定義域が a≦x≦a+2であるから,文字αの値が増加すると定義域全体が右へ移 また (α+2)-α=2であるから、定義域の幅が2で一定。 軸の位置が[1] 定義域の右外 [2] 定義域内 [3] 定義域の左外にある場合に分けて 解答 f(x)=x²-2x+2=(x-1)2+1 この関数のグラフは下に凸の放物線で, 軸は直線 x=1 であ 基本形に変 る。 [1] α+2 <1 すなわち [1] |軸 10 [1] 軸が定義 α < −1 のとき るから,定 図 [1] から, x=α+2 で最小とな 最小となる る。 最小値は f(a+2)=a2+2a +2 |x=1 x=a x=a+2 [2]a≦1≦a+2 すなわち [2] -1≦a≦1 のとき 図 [2] から, x=1で最小となる。 最小値は f(1)=1 最小 x=ax=1x =α+2 [3] 1 <α のとき [3] 軸 図 [3] から, x=αで最小となる。 最小値は f(a)=a2-2a+2 ← 1≦a+2 か -1≤a [2]軸が定義 ら, 頂点で [3]軸が定義 あるから,定 最小となる |最小 x=1x=ax=a+2 x=1 で最小値1 [1]~[3] から α < −1 のとき -1≦a≦1 のとき α>1のとき x=αで最小値α2-2a+2 書く。 x=α+2 で最小値α² +2a+2 答えを最後

解決済み 回答数: 1
数学 高校生

黄チャートのこの問題なのですが、赤枠のところがよく分からないので教えて欲しいです、、 それから赤枠以降も分からないので、教えていただけると助かります😭🙇‍♀️

基本 例題 66 最大・最小の文章題 (1) 大 00000 BC=18, CA=6 である直角三角形ABC の斜辺AB上に点Dをとり, Dか ら辺BC, CA にそれぞれ垂線 DE, DFを下ろす。 △ADFと△DBE の面積 の合計が最小となるときの線分 DE の長さと,そのときの面積を求めよ。 全体が右へ 場合に分けて HART & SOLUTION 文章題の解法 Hom 基本 60 117 基本形に (軸が定義光) るから、 1 2 定義 (6-x)2 頂点で 2 54-(6-x)² よって ADBE=- -·54= 62 x² 同様に, △ABC∽△DBE であり △ABC: △DBE=62:x2 3 2x2 小となる。 +2 05 150 0<x<6 AF=6-x ① △ABC∽△ADF であり, △ABC: △ADF=62:(6-x)2 △ABC=18・6=54 であるから △ADF= 6-x)2.54 ←相似比がmin→ 面積比はm²n2 ← 三角形の面積は 最大・最小を求めたい量を式で表しやすいように変数を選ぶ DE=x とすると, 相似な図形の性質からADF, △DBEはの式で表される。 また、xのとりうる値の範囲を求めておくことも忘れずに。 解答 DE=x とし, △ADFとDBE の 面積の合計をSとする。 0<DE=FC<AC であるから A D F B E C ← xのとりうる値の範囲。 (辺の長さ)>0 3章 8 2次関数の最大・ ・最小と決定 1 (底辺)×(高さ) 別解 長方形 DECF の面積 一義城の 定額 したがって, 面積は AS 549 S=△ADF + △DBE る。 3 = -{(6-x2+x2} 27 をTとすると, Tが最大に なるときSは最小となる。 DF=3(6-x) から T=x3(6-x) =-3(x-3)2+27 0<x<6 から, x=3でT は最大値27 をとる。 よって, 線分 DE の長さが 2 =3(x²-6x+18) 3のとき, Sは最小値 0 3 6 X =3(x-3)2 +27 12.6.18-27=27 ①において, Sはx=3で最小値 27 をとる。 をとる。 よって, 線分 DE の長さが3のとき面積は最小値27 をとる。 PRACTICE 662 AC=BC, AB=6 の直角二等辺三角形ABCの中に, 縦の長さが 等しい2つの長方形を右の図のように作る。 2つの長方形の面積の 和が最大になるように作ったとき, その最大値を求めよ。 B

解決済み 回答数: 1
数学 高校生

絶対値を含む方程式(場合分け)の範囲です。 1枚目2枚目のそれぞれ(2)の問題ですが、 X=1、-1を場合分けする際に 1枚目の時は(ⅱ)-1≦X≦1 2枚目の時は(ⅱ)-1≦X<1 なぜ一緒のこの2つ問題では符号が違うのでしょうか。 どういった違いがあるのでしょうか... 続きを読む

基礎問 18 絶対値記号のついた1次方程式 次の方程式を解け. (1) |.r-1|=2 |精講 |x+1|+|x-1|=4 絶対値記号の扱い方は11で学んだ考え方が大原則ですが、 合はポイントⅠの考え方が使えるならば、 場合分けが けラクです. (1) (解I) 解 HO |x-1|=2 は絶対値の性質より1=±2 よって, x=-1,3 (解Ⅱ) -11={ c-1|= だから, x-1 D (x≥1) -(x-1)(x<1) i) x≧1のとき ① は x-1=2 x=3 これは,x≧1 をみたす. ii) x<1のとき ①は -(x-1)=2 :.x=-1 これは, x<1 をみたす. よって, x=-1,3 (2) i) x<-1 のとき x+1<0, x-1 < 0 だから ②は(x+1)(x-1)=4 -2x=4 ... x=-2 これは,<-1 をみたす. i)-1≦x≦1 のとき +10, -1≦0 だから +1-(-1)- これをみたす (注)くのとき +1301>0 1ェー 28-4 ic これは、1<ェを (1) 甘)、血)より (2) A(-1). ら、②は 上の数直線により、 絶対値の 40となる で場合分 はじめにし た すかどう ① ェの値にかか ②x>1のとき (3) が大きくな くー1の ェが小さく ② ポイント いこと エック 演習問題 18 (1) ☆

解決済み 回答数: 1