学年

教科

質問の種類

数学 高校生

二次関数で質問です。 「やさしい高校数学」という参考書だと式や定義域に文字が入っている最大最小を求める問題で、下に凸の最大値を求めるときは、xの範囲の中心線に注目して、中心線が軸より左か右かの2通りで分けると書いてあるんですが、チャートの問題では3通りに分けて書かれているの... 続きを読む

234 3章 2次関数 最大の Pocetos とりあえず最大値を求めよう。 最大値も範囲に注目して求めるよ。 場合は 「xの範囲の中心線」に注目するんだ。 今回は-3≦x≦1より、 との中心、つまり, 中心線はx=-1だね。 この中心線が軸より左か右か で2通りに分けるんだ。 じゃ、次に (2) を求めていこう。会合 「最大値が1になるって?」 (2) y=(x+3a)²-9a²-2 (i)-is-3a つまり as 1/2のとき x=-3のとき KATEN A=121 最大値 -18a+7=11 y=x2+6ax-2に x=-3を代入した 2 9 よって a=-- これはas/1/3という条 件を満たす。 x=1のとき 最大値 6a-1=11 t y=x²+6ax-2に x=1を代入した () -3a<-1 つまり a>1/3のと よって a=2 これはa> /1/23 という条 件を満たす。 -3-1-3a も含む -3 -3a CLEME DE->T (1) TXODE-SE- UNJUS も含む -31 -3a 1 SWAJ -31 -3a ( )( ) より a=-2.2c 例題 3-16 (2) 大衣を (i),(ii) 答え 9 「x=-3やx=lが軸より左か右かは考えなくていいんですね。」 15006--08- うま ラト うに て答 例題

解決済み 回答数: 1