学年

教科

質問の種類

数学 高校生

なぜ最大値Мは2の場合分けをし、最小値мは4で場合分けをするのでしょうか?

実戦問題 10軸が変化する2次関数の最大・最小 αを定数とする。 2次関数 f(x)=x2+2ax+3a² -4 の区間 0 x 4 における最大値を M, 最小値をmとする。 (1)a=-1 のとき,M=ア, m= イウ である。よやうく よか (2) 放物線y=f(x) の頂点の座標は I a, オ a² - 力 )であるから, 最大値 M は α キク のとき M=T α キクのとき M= a² + シ a+ スセとなる。 また, 最小値mは α <ソタ のとき m = ■チ a² + ツ α+テト [ソタ Sa<ナ のとき m= Ja²- a≧ナのとき となる。 m=ネ Ja² (3) αの値が変化するとき,M-mは α = ハヒのとき最小値をとる。 解答 (1)a=1のとき f(x)=x2-2x-1=(x-1)2-2 よって, f(x) は区間 0≦x≦4 において 最大値 Mf (4) = 7, 最小値m=f(1)=-2 (2) f(x)=(x+α)2 + 24°-4 と変形できるから y y=Ax) [01 4x 放物線y=f(x) の頂点の座標は (-a, 2a²-4) -2 Kev x 区間 0≦x≦4の中央の値はx=2であるから,f(x) の区間 M は における最大値 (i) y=f(x) (i) a > 2 すなわち a < 2 のとき M=f(0)=3a2-4 (ii) すなわち a≧-2のとき M=f(4)=3a2+8a + 12 の≦2 次に,f(x) の区間 0≦x≦4 における最小値mは 大 0 214 x a Kev () -α > 4 すなわちα <4のとき (ii) y y=f(x)! m=f(4)=3a² + 8a + 12 (iv) 0 < a4 すなわち 4≦a <0 のとき m = f(-a)=2a²-4 ≤0 (v) as すなわち a≧0 のとき m = f(0)=3a²-4 (3) (2) の (i)~(v)より, M-m の値は (ア) a <-4のとき M-m=3a²-4-(3a²+8a +12) =-8a-16 (イ) -4≦a <-2のとき M-m 3a²-4-(2a2-4) = a² (ウ) −2≦a < 0 のとき M-m=3a+8a + 12-(2-4) = (a+4)2 (エ) a≧0 のとき M-m 3a²+8a+ 12-(3a² - 4) =8a+16 (ア)~(エ)より, M-mのグラフは上の図のようになる。 グラフより, M-mは α=-2 のとき 最小値4 攻略のカギ! 4 20 ( y M-m4 y=f(x) の 夢 0 4+ -a 16 (iv) YA y=f(x) 14 (v) 43 2 10 a y=f(x) By 1 区間における2次関数の最大・最小は、軸と区間の位置関係を考えよ 7 (p.18) -a4 4

回答募集中 回答数: 0
数学 高校生

やり方教えて欲しいです😭

学習した日 月日 ( 2次方程式 38 2次方程式の利用(1) 立宜野 項 18m, 横9mの長方形の花畑に 右の図のような同じ幅の道をつくり たい。 花畑の部分の面積を42m²に (目標 具体的な問題を2次方程式を利用して解くことができる。 9m- DOD DD> DDDD xm =0の解が3 -4)=0 ると、 2=0 5. a. D> するには,道の幅を何mにすればよ 8m いですか。 (1) 道の幅をxmとすると, 花畑の縦の 部分は (8-x) mと表すことができる。 横の長さを表す式を求めなさい。 xm 宜野湾市立嘉数中学校 基本事項 2次方程式を利用して問題を解 <手順 ①求めるものをェとおく。 ②数量間の関係をつかみ、2次 方程式を立てる。 ③ 2次方程式を解く。 ④求めた解が問題の答えに適し ているかどうかを確かめ, 答 えとする。 きは、そのわけも書く (2)面積が42m²ということから, xを求めるための方程式をつくりなさい。 問題に適していない解があると (3)(2)でつくった方程式を解いて道の幅を求めなさい。 道幅が8m以上になる ことはあり得ない。 練習② 縦が36m, 横が45mの長方形の土地に、 右の図のように、 縦, 横同じ幅の道路をつけて残りを畑にしたい, 畑の面積が 1540m²になるようにするには道路の幅を何mにすればよい ですか。 (1) 道の幅をxmとして縦と横の長さを表す式を作りなさい。 もうに 縦 m 横 (2)面積が1540m²ということから, 方程式を作りなさい。 36m xm -45m xm m 道路を確認 1 のように移動し ても畑の面積は変わらない。 (3)(2)の方程式を解き、 道路の幅を求めなさい。 もう! 練習3 1辺がxcmの正方形の縦の長さを4cm短くし, 横を2倍にすると, 面積が90cmになった。 もとの正方形の面積を求めなさい。 xcm xcm xcm 4cm 自己評価 (5) とても まあ, できた できた

回答募集中 回答数: 0
数学 高校生

この問題の1番について、 a+5、a +3を2つの自然数 を用いて表していると思うのですが、なぜ文字は自然数 K のみだけ、とかじゃだめなんでしょうか?

例題 108 倍数 互いに素に関する証明 今は自然数とする。 α+5は4の倍数であり, α+3は6の倍数であると α+9は12の倍数であることを証明せよ。 自然数αに対し, a と α+1は互いに素であることを証明せよ。 CHART & SOLUTION 倍数である, 互いに素であることの証明 p.426 427 基本事項 1.5 を自然数として α+5=4m, a+3=6nと表される。そして、「αの倍数かつ の倍数ならば ともの最小公倍数の倍数」であることを利用する。 また、aとbが互いに素のとき 「akが6の倍数ならば、kはもの倍数」であることを 利用してもよい ( 参照)。 (2) 互いに素である 最大公約数が1 最大公約数をg とおいて,g=1であることを証明すればよい。 自然数 A,Bについて AB=1 A=B=1 を利用する。 解答 なぜ 同じ買だめ? 経と同じ異だめ? (1)+5,α+3 は,自然数 m n を用いて a+5=4m, a+3=6n と表される。 a+9=(a+5)+4=4m+4=4(m+1) ① a+9=(a+3)+6=6n+6=6(n+1) ② よって、 ① より α+9 は4の倍数であり, ② よりα+9 は 6 の倍数でもある。 したがって, α+9は4と6の最小公倍数12の倍数である Tisan's 割る数が 4章 互いにか13 素数とは 別解 (1) ① ② から 4(m+1)=6(n+1) すなわち 2(m+1=3(n+1) 2と3は広いに素である から m+1は3の倍数 である。 よって m+1=3k(kは自然数) と表される。ゆえに a+9=4(m+1) 数と倍数

回答募集中 回答数: 0
数学 高校生

誰か分かる方(2)について詳しく解説お願いします 🙇 写真下に解説がありますが、それを読んでもよくわかりません💦

104 第2章 2次関数 例題 44 最小値の最大・最小 **** x の関数 f(x)=x2+3x+mのm≦x≦m+2 における最小値をgと おく. 次の問いに答えよ. ただし, m は実数の定数とする. (2) (1)最小値g をmを用いて表せ.dotup. (岐阜大・改) (2)の値がすべての実数を変化するとき, gの最小値を求めよ. 考え方 (1) 例題 43 と同様に考える.軸が定義域に含まれるかどうかで場合分けする。 (2) (1)より,mの値を1つ決めると,g の値がただ1つ決まる. よって,(1)で求めた mの関数とみなし、グラフをかいて考える (1)/(x)=x'+x+m=(x+2)+m-2 小豆 解答 グラフは下に凸で, 軸は直線 x=- 2 $301> 3 (i) m+2<-- 3のとき 2 e+ 小 場合分けのポイント 3は例題 43 (1) と同様 つまり,<-1のとき 20001 目はグラフは右の図のようになる。最小最大 したがって, 最小値 g=m²+8m+10(x=m+2) mm+2 3 3 (ii) m≤- ≦m+2のとき x= 2 2 7 つまり、12sms/2/2のとき 3 が区内 軸が区より左側 +2 0. グラフは右の図のようになる. したがって, 最小値 最小 432 m m+2 Stalton 9 (s=x) ex g=m-4 x=- 2 x=- 32 から、 (8=x) 8 (- 3 (iii) m>- のとき 2 グラフは右の図のようになる。 したがって, 最小値 g=m²+4m (x=m) (2)(1)より,gをmの関数とす ると,グラフは右の図のよう になる. 72- 32 のとき、 -4 TT よって, gの最小値は, " (i) -6(m=-4 のとき) | 最小 mm+2 Sp>I (vi) 94 (iii) m軸,g軸となる。 とに注意する. (m) 大量 15 64 最小 (ii) 23

回答募集中 回答数: 0
数学 高校生

(2)で「-1/√3<m<1/√3」からXの範囲を求めるとき、 解答のようにではなくて、三枚目のように考えてしまいました。 これでうまく求められないから、 解答のようにYの範囲を求めて図を描くことで、Xの範囲を求めよう! っていう思考回路ですか?

偶数の関係を使った ④よりm=1/2で⑤に代入しY=1/2x2-2x ③ ④ により,X < 0 または 8 < X 2 X,Yをx, y に書き換え, 求めるMの軌跡は よって, X=2m……… ④ であり,Mは①上にあるから,Y=mX-4m...⑤ X D=m²-4m>0 .. <0 または 4<m (3)P,Qの座標をα,βとし,M(X, Y) とおくと,x=α+B αβは②の2解であるから,解と係数の関係により,a+β=4m 2 ③ これから軌跡の限界が出てく P,Qの座標をm で表す必要 このようなときは具体 急がず、とりあえず文字でお ⑤ではなく. 34 y=14x²-2x Y= 16 y= x²-2x (x<08<x) であり,右図太線である (○を除く) 8 I 1-1/2 (+) (a+B)-2a8 8 =2m²-4m と ④ からYをXで表しても たことはないが(本間の場 ⑤ (直線上にあること)に着 るのがうまい。 補助に考える。 円が を通るときは別に調 く。 12 演習題 ( 解答は p.104) 円(x-2)2+y2=1と直線y=mzが異なる2点P, Qで交っているとき, (1)の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は その座標を明示せよ). (群馬大理工,情/改題) Mが直線上にある をうまく使う、なお 形的に解くことも る.

回答募集中 回答数: 0
数学 高校生

同一直線上にないというところから理解ができません。お願いします。

る. このことから,右のようにに、 長さより大きい△ 三角形の2つの辺の和は、残りの辺の長さより大きい という性質を利用することができないか考える m つまり,BD=PD, CE=PE となる △PDE が存在すること を示すことができれば, DE <BD+CE を示せそうである. 右の図のように、線分AM 上で, BM=CM=PM とな るように点Pをとる. 人式の証明 海形の or △BDM と △PDM において, ・成立条件2組の辺とその間の角が, それぞれ等しいので △BDM=△PDM a LA C a<b+c 9 /P E 点P と PD, PE の補助 線を引く. # BMCIA (0) Focus よって, BD=PD ...... ...① ∠DBM = ∠DPM ...... △CEM と △PEM において同様に考えて, △CEM=△PEM ML よって, CE=PE …③ ∠ECM=∠EPM …④ ②④より A A DE <BD+CE 三角形 成立条件:同一直線上 じゃない ∠DPM + ∠EPM= ∠DBM+ ∠ECM +28) = ∠ABC+ ∠ACB する。 3208AA =180°-∠BAC <180° [ + ] よって, 3点D, P, Eは同一直線上にない. したがって, △PDE は存在し,三角形の成立条 件より, DE <PD+PE ①③ 5より、 DE <BD+CE 3点が同一直線上にある とき, DE=BD+CE と なるので,そうならない ことを示しておく. 28 28 A 08 411 STAJ 不等式の満たす意味と同じ図形の性質がないか考える 内 214 (1) A て,辺BCの中点をMとする. -BA Farel 朱

回答募集中 回答数: 0