学年

教科

質問の種類

数学 高校生

数列です。計算したのですがbnで解答と変わってしまいました、どうしてもどこで間違えたか見つけられなくて、、どこで間違ったか教えてもらいたいです、 お願いします🤲🏻🙇‍♀️

8 ■る. (大) んですか 2項間漸化式 (4) 整式型~ 1=6, an+1=3an-6n+3(n=1, 2, 3, ...) で定められる数列 an | がある . (1) an+1-an=6m とするとき, bn+1 を bn を用いて表せ. (2) 数列{an}の一般項を求めよ. 149 ai 解答 (1)与えられた漸化式から, an+2=3an+1-6(n+1)+3 an+1=3an-6n+3 (2) まず,数列{bn}の一般項を求める. 数列{bn}の初項 by は, ①-②から, an+2an+1=3(an+1-an) - 6 ここで, an-1-am=b, とすると,左辺の an+2an+1=bn+1 であり,③から, bn+1=3b₂-6 b1=a2a1=(3a1-6・1+3) -a α2 は②n=1 にすればよい =2a1-3=2・6-3=9 bn+1=36-6を変形すると, よって, α=3α-6より α = 3 になるから, bn+1-3=3(bn-3) [+b+1=3bm - 6 これより,数列{bm-3}は公比3の等比数列であり,-) 3=3・3 - 6 (0) GLED). bn+1-3=306-3) 初項 b1-3=9-3=6 b-3=6.3”-1=2.3" = であるから、④より, an+1-am=2・3"+3 さらに, 左辺に②を用いて an+1 を消去すると, (3an-6n+3) -an=2.3"+3 2an=2.3"+6n nをn+1に取りかえた HOSHASHI+ . .bm=2・3"+3 ・・・④ 文系 数学の必勝ポイント・ BA ∴. an=3"+3n (東洋大) [解説講義 an+1=pan+f(n)(f(n)はnの1次式が多い)の形の漸化式は,文系の入試では,本問のよう な誘導がつけられることが一般的で、誘導に従って考えていくと「基本形の漸化式」に帰着 されることが多い 「n を n +1に変えた漸化式 an+2=pan+1+ f(n+1) を作って,与えられた 漸化式との差 (解答の①-②)を考えて,置きかえる」という解法の特徴を理解しておこう. an+1=pan+f(n) の形の漸化式 nan+1に変えた式を作って, その差を考える 185

解決済み 回答数: 1
数学 高校生

この問題の⑵で、P Qがsinαだから2/√5となるところが分かりません。 教えてください  お願いします🙇‍♂️🙇‍♂️🙇‍♂️🙇‍♂️🙇‍♂️

標問 35 (2) 三角関数の最大最小 図において, OA, OB は半径1の円の互いに垂直な 2つの半径, PQ は BO に平行で, 四角形 PQQ'P' は 正方形である.図の斜線部分の面積をSとするとき, 次の問いに答えよ. (1) ∠POQ=0 (2) Sが最大となるときのPQの長さを求めよ. →精講 を導いたら (i)前問のように 1/12 cos20 +sin20 を合成す るか,または (ⅱ) 倍角公式を使って 1/12 cos2012/2= と変形して S' (8) を因数分解します. (ii) の場合, tan 0 が現れるように ds -=sin cos 0(2-tan) de = (0<0<) とおいて,Sを0で表せ. = ds do (2) (1) まとめ方にもよりますが ds =1/12 cos20 + sin20-12 do とすれば符号の変化が調べやすくなります。 ただし, tan0=2 を満たす角はわからないの で 0=α などとおくことになります。 解答では, (ii)の方法を選択することにします. 4303 1 2 (1) S=(三角形OQP) + (正方形 QQ'P'P) - (扇形 OAP) 1 sinocos0 + sino-120 2 1 -sin20+ sin20- =1/(1- 2 20-12/20 -cos20+2sin Acoso- -sin20 解答 2 (85) 1 1 2 -(1-2 sin²0)+2 sin cos 0- 2 B 8 P 解法のプロセス dS do Q を計算 A 83 (岡山大) ↓ 合成 tan 0 が現れるように因数分解 わからない角は適当において増 減を調べる

解決済み 回答数: 1