学年

教科

質問の種類

数学 高校生

・数C 式変形がどうなっているのか教えてほしいです、よろしくお願いします

634 基本 例題 30 線分の平方に関する証明 0000 △ABC の重心をGとするとき,次の等式を証明せよ。 (2) AB2+AC2=BG2+CG2+4AG2 (1) GA + GB + GC= 0 D ( 基本 15 重要 33. 基本 71、 指針 (1) 点を始点とすると, 重心Gの位置ベクトルは 0は任意の点でよいから, Gを始点としてみる。 ABO OG = (OA+OB+OC) (2)図形の問題→ベクトル化も有効。 すなわち, AB2 など ( 線分)には AB=|AB|=|6-a として,内積を利用するとよい。 なお,この問題では BG?, CG2, AG2 のように, G を端点とする線分が多く出てくる から,Gを始点とする位置ベクトルを使って証明するとよい。 すなわち、GA=d, GB=6,GC= として進める。 (1)の結果も利用。 CHART 線分)の問題 内積を利用 (1) 重心Gの位置ベクトルを, 点 0 LA 解答 に関する位置ベクトルで表すと 三 OG= (OA+OB+OC) である 3 文 G 別解 (1) GA+GB+GC =(OA-OG)+(OB-OG) + (OC-OG) =OA+OB+OC-30G =0 から,点Gに関する位置ベクト ルで表すと B C GG=1/21 (GA+GB+GC) 3 OA: 4:00 ゆえに GA+GB+GC=0 GG=0 (2) GA=a, GB=, GC= c とすると,(1)の結果から a+b+c=0 ゆえに 条件式 また よって AB=b-a, AC=cka=-2a-6 AB2+AC2-(BG'+CG2+4AG2) =|AB|+|AC|-|BG+CG+4|AGI) =16-a+1-24-6 2G-1-6²-la+61-41- ゆえに =(16-26 a+la)+(4a²+4㕯+1612) -16-(la+2ab+16)-4a² =0 ベクトル AB2+AC2=BG2+CG2+4AG2 HADA HOBA 練習 次の等式が成り立つことを証明せよ。」( ② 30 (1) △ABCにおいて, 辺BCの中点をMとするとき B'+AC2=2(AM'+BM) (中線定理) (2) △ABCの重心をG, 0 を任意の点とするとき AG2+BG2+CG2=0A2+ OB2+ OC2-30G 2 文字を減らす方針で <A=B⇔A-B = 0 AB²=|AB|²

解決済み 回答数: 1
数学 高校生

これの(2)でr=0、1、2で場合分けしてると思うんですけど、なんで場合分けした各値を足しているんですか?普通場合分けの時って、答えはr=0のとき〇〇、4=1のとき〇〇みたいに書くんじゃないんですか?

次の式の展開式における,[]内に指定された項の係数を求めよ。 (1) (x+2y+3z) [x°yz] [武蔵大] (1+x+x2)[x] [愛知学院大 ] P.16 基本事項 指針 二項定理を2回用いる方針でも求められるが,多項定理を利用して求めてみよう。 解答 n! (a+b+c)" の展開式の一般項は p!q!r! a'b'c', p+q+r=n (2)上の一般項において, α=1, b=x, c=x2 とおく。 このとき,指数法則により 1.xq(x2)'=x9+2r である。 g+2r=4となる0以上の整数 (p, g, r) を求める。 (1) (x+2y+3z) の展開式の一般項は 4! 4! pigirix (2y)(3z)=(piair! 20.3)xyz ただしp+q+r=4, p≧0,g,r (a+b+c)の一般項は 4! p!q!r! a'b'c' (p+gtr=4, p≧0, q≥0, r≥0) を これら xyz の項は,p=2, g=1,r=1のときであるから 4! ・2・3=72 2!1!1! 別解 {(x+2y) +3z} の展開式において, zを含む項は C(x+2y) •3z=12(x+2y) z また, (x+2y) の展開式において,xy を含む項は Cx2.2y=6x2y よって, xyz の項の係数は 12×6=72 (2) (1+x+x2)の展開式の一般項は 二項定理を2回用いる方 針。 まず(+32) の展 開式に着目する 二項定理 8! 8! 1.x(x2)= p!g!r! *x9+2+ <(cm)=am p!q!r! ただし p+g+r=8 ①, p≥0, q≥ ≥ dp, g, rは負でない整数。 ****** p=r+4 4-2r≥0 ****** ③ ②①に代入すると p+4-2r+r=8 xの項は, g+2r=4 すなわち g=4-2r のときであり, ① ② から ここで,②g≧0 から rは0以上の整数であるから ②③から r=0 のとき r=1のとき p=5g=2 よって, 求める係数は 8! r=0, 1, 2 p=4,g=4 r=2のとき p=6,g=0 44-27205 r≤2 8! 8! + =70+168+28=266 4!4!0! 5!2!1! 6!0!2! 40!=1

解決済み 回答数: 1
数学 高校生

波線部のところなんですが5と近似する意味は何ですか?? というか、なぜ5と近似していいのですか? 5.1761より大きいからそれよりも小さい5より大きいのは確定ということですか? その後の4ⁿ-1>10^5 を4ⁿ>10^5とするのは、1が影響がないくらい小さいからですか... 続きを読む

練習初項が2, 公比が4の等比数列を {an} とする。 ただし, 10g102=0.3010, logio3=0.4771とする。 ④18 (1) a が10000を超える最小のnの値を求めよ。 (2)初項から第n項までの和が100000 を超える最小のn の値を求めよ。 (1)初項が2,公比が4の等比数列であるから an=2.4"-11 2.4-110000 22n-1>104 10g1022n-1>10g10 104 an> 10000 とすると 整理して 両辺の常用対数をとると ゆえに (n-1)10g102>4 よって n> /12/11 2 2 log102 108102 +1 + =7.14...... 1 0.3010 2 この不等式を満たす最小の自然数n を求めて ←an=arn-1 ←2.4" '=2(22)7-1 =2.227-2 ←log1010=410g1010=4 ←log102 0 検討 対数の性質 (数学II) > 0, ¥1, M> 0, N > 0, んは実数 のとき 110gaMN n=8 (2) 初項から第n項までの和は 2(4-1)_2(4"-1) = 4-1 =logaM+logaN 2(4"-1) > 100000 M ①として, 両辺の常用対数をとると 2 loga 3 N 2(4-1) =logaM-logaN log10 ->log10 105 3 3 loga M=klog.M ゆえに よって log10 (4"-1)>5-10g102+10g103 ここで 10g102+10g10 (4-1)-10g103>5 5-10g102+10g103=5-0.3010+0.4771=5.1761 >5=510g1010=10g10105 ゆえに 10g10 (4-1)>10g10 105 よって 4"-1>105 ゆえに 4">105 ② すなわち 22n>105 <4">105+1>105 この両辺の常用対数をとると 2n10g10 2>5 5 ゆえに n> 5 2 log102 2.0.3010 =8.3...... よって、②を満たす最小の自然数nは ここで n=9 2(4°-1)=1/2(4'+1)(4'-1)= 2 3 3 2(49-1) 2=1/12 (2.4°+1)(2・4°-1)=1/23・51 3 =174762>100000 3 ・・257・255=43690 <100000 <48-1-(4)-1 ・・513・511 <4-1-(2.4)-1 2(4"-1) 3 は単調に増加するから, ①を満たす最小の自然数nは n=9

解決済み 回答数: 3