学年

教科

質問の種類

数学 高校生

数学の問題です。110で最小値を求めるのに直線と点の距離の関係の公式を右のノートで使っているのですが何故か答えがあいません。答えは1/2で私は-5/4だと思いますなぜですか?

x-y 0から 求める a, b の条件は,①,② から, [b≦a+5 b 62-2a-1 b≥a+5 または と と同値である。 b≤-2a-1 よって、 求める領域は図の斜線部 分。 ただし、境界線を含む。 -5 -2_1 [inf. F f(x, y) =ax-y+b として, f(-1, 5)f(2,-1)≦0 と考えることもできる。 3章 14,67 PR ・607 M 4週間でのAの生産台数をx, Bの生産 台数をyとすると,条件から 組立 18 A 6 時間 2時間 x0,y≧0, B 3 時間 5時間 6x+3y≦18・4, 2x+5y ≦10・4 すなわち x = 0, y≧0, 2x+y≦24, 2x+5y≦40 離は この連立不等式の表す領域は右の図 の斜線部分である。 ただし, 境界線 を含む。 合計生産台数をkとすると YA PR ある工場で2種類の製品 A, B, 2人の職人MWによって生産されている。 製品Aについて ③109 は 1台当たり組立作業に6時間,調整作業に2時間が必要である。 また, 製品Bについては, 組立作業に3時間,調整作業に5時間が必要である。いずれの作業も日をまたいで継続するこ とができる。 職人Mは組立作業のみに, 職人Wは調整作業のみに従事し,かつ, これらの作業に かける時間は職人Mが1週間に18時間以内, 職人W が 1 週間に 10 時間以内と制限されている。 4週間での製品 A,Bの合計生産台数を最大にしたい。 その合計生産台数を求めよ。 W [岩手大] infx, y がいくつか の1次不等式を満たすと xyのある1次式の 値を最大または最小にす る問題を線形計画法の間 題といい, 経済の問題で も利用される。 最大16:07 (2)(46) b=6 6=-20 + 調整 -644 半径 6= 1-2151 い 2 2 k=x+y y=-x+k (10,4) これは傾きが-1, y切片がんの直線 を表す図から, 直線 ①が点 (10,4) を通るとき,kの値は最大になり k=10+4=14 O 12 ←直線①の傾きが-1 から,領域の境界線の傾 きについて 5 6 =kta -2<-1<-2 したがって,合計生産台数は最大14台である。 ← A10台 B 4台 ←14.51 16=9-4=21 PR 座標平面上の点P(x, y) が 3y≦x +11, x+y-5≧0,y≧3x-7 の範囲を動くとき, @110 x+y2-4y の最大値と最小値を求めよ。 与えられた連立不等式の表す領域 Dは, 3点A(1, 4), B(3,2), C(4,5) を頂点とする三角形の周 [類 北海道薬大] 境界線の交点 A, B, C C の座標はそれぞれ次の 連立方程式を解くと得ら れる。

解決済み 回答数: 1
数学 高校生

なぜマイナスをつけていないのでしょうか?教えてください。−(xの2乗+2x−a+2)=0の判別式DについてD>0にしてやってはいけない理由を教えてください。お願いします。

基本 例題 95 関数が極値をもつための条件 0000 a 2 は定数とする。 関数f(x)= x+1 x2+2x+a について,次の条件を満たすαの値ま たは範囲をそれぞれ求めよ。 (1) f(x) がx=1で極値をとる。 (2) f(x) 極値をもつ。 /p.162 基本事項 2 基本 94 重要 96 指針 f(x) は微分可能であるから f(x) が極値をもつ⇔ [[1] f (x)=0となる実数αが存在する。 [[2] x=αの前後でf'(x) の符号が変わる。 まず必要条件 [1] を求め, それが十分条 件 [2] も満たす) かどうかを調べる。 f'(x) f'(x)=0 0=(2 f'(x) f'(x)\ 極 f'(x) <0 <0 >0 小 f'(x) = 0 (1) f(1) = 0 を満たすαの値 (必要条件) を求めてf(x)に代入し, x=1の前後で f(x) の符号が変わる (十分条件) ことを調べる。き TRAHD (2) f'(x)=0が実数解をもつためのαの条件(必要条件) を求め、その条件のもとで, f'(x) の符号が変わる (十分条件)ことを調べる。 なお,極値をとるxの値が分母を0としないことを確認すること。 4 章 1 内 AR 90 f'(x)= 定義域は,x2+2x+α≠0 を満たすxの値である。f(x)の分母)≠0 1(x2+2x+a)(x+1)(2x+2) 2+2x-a+2 u'v-uv (x2+2x+α)2 x2+2x+α) 2 v2 (1) f(x) は x=1で微分可能であり、 x=1で極値をとる とき f'(1) = 0 第1 必要条件。 (分子)=1+2-a+2=0, (分母)=(1+2+α)20( よって α=5 このときf'(x)=(x+3)(x-1) <a=5は の解。 (x2+2x+5)2 ゆえに、f'(x) の符号はx=1の前後で正から負に変わ十分条件であることを示 り, f(x) は極大値 f(1) をとる。 したがってd=5 0x (2)f(x)が極値をもつとき, f'(x)=0となるxの値が(この確認を忘れずに!) あり, x=cの前後でf (x) の符号が変わる。(x) よって, 2次方程式x2+2x-a+2=0の判別式Dにつ て D0 すなわち 12-1 (-α+2)>0 これを解いて a>1 このとき,f'(x)の分母について {(x+1)'+α-1}^≠0 であり、f'(x)の符号はx=cの前後で変わるからf(x) は極値をもつ。 したがって a>1 x=c(C1とC2の2つ)の前 後でf'(x) の符号が変わる。 =x+2x-a+2 x + + C1 C2 x

解決済み 回答数: 1