学年

教科

質問の種類

数学 高校生

数Ⅰの一次不等式で、赤い四角で囲ったところが分かりません。教えてください‼️

(1) 不等式 5x-7 <2x+5 を満たす自然 3a-2 (2) 不等式x<L 4 を満たすxの最大の整数値が5であるとき、 定数α( αの値 基本 34 の範囲を求めよ。 指針(1)まず,不等式を解く。その解の中から条件に適するもの(自然数)を選ぶ。 (2)問題の条件を数直線上で表すと, 右の図のようにな 6 3a-2 る。 のの を示す点の位置を考え、問題の条 5 3a-2 I 4 4 件を満たす範囲を求める。 (1) 不等式から 3x<12 自然数=正の整数 kをk>2を満 5-x≦x<2x す整数xがち. (ア)不等 (イ) (ア) る。 たす 4は含まない 解答 したがって x<4 xは自然数であるから x=1,2,3 (2)x< 3a-2 を満たすxの最大の整数値が5であるから 声の左下立 解答 1 2 3 4 X 5- 4x< 5-x≤4x 4 (0- 5 < 3a-2 4 4x<2x+ ≤6 (*) (3a-2 4 5<3a-2 8- から 203a- Dr 22 =5のとき,不等 式はx<5で、条件を満 たさない。 k>2であ よって a> 3 ① 3a-2 生 3a-2 e>xɛ 4 6から 3a-2≦24 4 26 -= 6のとき、不等 の向 式は x<6 で,条件を満 たす。 また,これ よって as その整数 ゆえに 3 (2) ① ② の共通範囲を求めて 注意 (*)は,次のようにして解いてもよい。 各辺に4を掛けて 各辺に2を加えて l 20<3a-2≤24 22 <3a26 00 05% 3 223 <a≤ 285 26 3 すなわち 3a-2 6 4 不等式の端

解決済み 回答数: 1