学年

教科

質問の種類

数学 高校生

ヵが分かりません。 1枚目に記載してる写真を見て欲しいのですが、そこにシャーペンで書いてある①??と②??を教えて欲しいです。 なぜ成り立つのか分かりません

① 異なる素数 p q r を用いて 以上より、nが最大となるのはn=12のときであ り, n=12となるのは (i) より 23x32=72 25x3 = 96 (Ⅲ)より 22×3×5=60 22×3×7=84 2×32×5=90 であるから,全部で5個ある。 第5問 (1) APC は, △APC を点Cのまわりに時計回り に60° だけ回転移動した三角形であるから したがって AA'P'C=AAPC AP = A'P' B C (2)時計回りに回転移動する角が 60°のとき. △ACAは正三角形となるから, AA' = AC は成 り立つ。しかし、時計回りに回転移動する角が 60° でないときには,AA'ACは成り立たないこと がある。 ①④ 時計回りに回転移動する角の大きさによら ず△APC APC であるから, AC = A'C, CP=CPは成り立つ。 ②③時計回りに回転移動する角が60°のときに も, AP = AP', APPP'は成り立たないことが ある。 A'D' LAB であるから、APP ABPPは合同な正三角形 である。 よって ∠APB= ∠CQD=60°+60° = 120° ② <BPP=60° より ∠APP=60°であるから AP = BP=CQ=DQ より =1/AB = 4√3 3 1 sin 60° ? PQ=4-2BP cos60°=4- AP + BP + PQ + CQ + DQ 4√3 -4 +4 - 4/3 3 =4+4√3 A 4√3 CP = CP ② ② および P'CP = 60° より, △PCPは正三角形 であるから CP = PP' ③ よって、 ① ③より AP + BP + CP = A'P′ + BP + PP′ ④ A' P ⑤ 時計回りに回転移動する角が 60°のとき, △PCPは正三角形となるから, CP = PP'は成り 立つ。 しかし、時計回りに回転移動する角が60°で ないときには, CP = PP' は成り立たないことがあ る。 ➡0, ⑤ (3) 次の図のように, ABP を点Bのまわりに反 時計回りに 60°回転移動した三角形を A'BP/ △DQC を点Cのまわりに時計回りに 60°回転移動 した三角形を DQO とする。 P P A' B B -C A' 点Pの位置が変化すると,それに応じて点P'の 位置も変化するが, 点Bと点 A' の位置は変化し ない。 B D' よって, 2点P, P' が直線 A'B 上にあることが あれば、そのときに AP + BP + CPは最小となる。 ③ △PCPは正三角形であるから, 4点 A', P', P, Bが一直線上にあるとき ∠BPC = 180°-∠P'PC = 120° ④ ここで, △ABC は鋭角三角形であり, 内角はすべ 120° よりも小さい。 したがって、点Pは確かに △ABC の内部にある。 (1)と同様に考えて AP + BP + PQ + CQ + DQ =AP + PP + PQ + QQ + QD] であるから, 4点 P', P, Q, Q' が直線 A'D'上に あるときに AP + BP + PQ + CQ + DQ は最小と なる。 △PPB, QCQ' は正三角形であるから, 6点 A', P', P, Q, Q', D' が一直線上にあるとき AAA'BADD'C である。 さらに,正方形と正三角形の対称性より -③-9-

回答募集中 回答数: 0
数学 高校生

1番は解決しました。2番はなぜ外すことができるのか教えてほしいです。

考える。 EU), であるこ 都産大 ] で、次の C BU (2) ACB が成り立つとき, A, B を数 が同時に成り立つことである。 線上に表すと, 右の図のようになる。 ゆえに, ACB となるための条件は k-6≦-2... ①, 3≦k ... ② k-6-2 3 kx これと②の共通範囲を求めて ①から k≤4 3≦k≦4 =xlxは物を全体集合とする。ひの部 3 ←左の図 をかいて 8-14 +7. -+5) ST. ANB B(2.5)であるから a+1-5 =2のとき SEA ゆえに a+7=9, a²-4 よって A=12.4.5), B={4, g このとき、AN(25) となり a+7=5, a 練習 1から1000までの整数全体の集合を全体集合とし,その部分集合A, B, C-2 のとき ③47 A={nnは奇数, n∈U}, B={n|n は3の倍数でない, nEU}, C={n|n は 18 の倍数でない, nEU} とする。このとき, AUBCCであることを示せ。 A={n|n は偶数,nEU}, B={n|nは3の倍数,n∈U} 偶数かつ3の倍数である数は6の倍数であるから AnB={nnは6の倍数, n∈U} また,C={n|n は 18 の倍数, n∈U}であり,18の倍数は6の CCANB & J 倍数であるから よって A={2, 4.5), B=(4. このとき、ANB ={2}となり、 上から a=2 [←BC30以下の自然数全体を全体集合 「〜でない られて このこともA={2, 4, 6, 8, 10, 12, の集合をB5の倍数全体の集合 (1) ANBOc (2 ることの着 30}. B={3,6,9,12,15,18, 21, 24, 27, 30), .0)- CCAUB ド・モルガンの法則により, An=AUBであるから 0 よって ② CAUB すなわち AUBCC 検討 ド・モルガンの法則 AUB=A∩B, ANB=AUB が 成り立つことは,図を用いて確認できる。 ←QCPによって C=(5, 10, 15, 20, 25, A∩B∩C={30} BUC 。 (a) U .0) まず, AUB=ANBについて, AUB は図(a) の斜線部分, AnBは図(b)の二重の斜線部分である。 の ={3,5,6,9,10,12, よって AN(BUC)= A∩B={6,12,18,2 (AUB) NC= (b) U O が AUB B (b) 部分が 重なり合った 次のことを証明せ ANB SO (1) A={3n-1/r 図 (a) の斜線部分と図(b) の二重の斜線部分が一致するから ALIZ (2) A={2n-1| xEB とすると, x=6

回答募集中 回答数: 0
数学 高校生

この⑵で、三角形の重心と、Pを通る直線を求めようとしたのですが、模範解答はその解き方ではないですが、わたしの解き方でも答えはでますよね?? でも解いてみると、2枚目の写真のようになって答えと違ってしまうんですけど、どこかで計算ミスしてるだけですかね、?

は、たの値に関係な ついての 恒等式 整理する。 ■3x+y-3=0 の交点を 恒等式と考える 係数比較法。 んについての恒等 る。 kA+B=0がんにつ ての恒等式 ⇔A=0, B=0 点の候補を求め、 それた なお、代入する YA めよ。 -2k=0 0 」,「対 83 直線と面積の等分 重要 3点A(6,13), B(1, 2), C(9, 10) を頂点とする △ABC について (2) 辺BCを1:3に内分する点Pを通り, △ABCの面積を2等分する直線の (1) 点Aを通り, △ABCの面積を2等分する直線の方程式を求めよ。 方程式を求めよ。 基本 75.78 指針 解答 大 (1) 三角形の面積比 等高なら底辺の比であるから 求める直線は, 辺BC を同じ比に分ける点, すなわち辺BCの中点を通る。 (2) 求める直線は, 点Pが辺BCの中点より左にあるから, 辺ACと交わる。 この交点をQとすると 等角→挟む辺の積の比(数学A: 図形の性質) 1 CP+CQ により CB・CA 2 これから、点Qの位置がわかる。 各/1+9 合 (1) 求める直線は,辺BCの中点 を通る。 この中点をMとする と、その座標は ACPQ △ABC 2+10 2' 2 y-13= 自由標は すなわち (5, 6) よって 求める直線の方程式は (x-6) HAGENT = 6-13 5-6 y=7x-29 ya ( 3・1+1・9 1+3 0 A(6, 13) P B(1,2) 3.2+1 10 1+3 3 したがって (2) 点Pの座標は すなわち (3,4) 辺AC上に点Qをとると、直線PQ が △ABCの面積を 2等分するための条件は ACPQ CP:CQ 3CQ 1 △ABC CB・CA 4CA 2 -Q C(9, 10) ・M x B ゆえに CQ:CA=2:3 よって, 点Qは辺 CA を2:1に内分するから, その座 /1.9+2.6 1.10+2.13 2+1 2+1 すなわち (7, 12) したがって,2点P Q を通る直線の方程式を求めると y-4= 12-4 7-3 (x-3) すなわち y=2x-2 M 8 ABS ( △ABMと△ACMの高 さは等しい。 135 <異なる2点(x1, yi), (x2, y2) を通る直線の方 程式は y-y=21(x-x) X2-X1 から <AABC= =12CA-CBsin C, ACPQ=CP-CQ sin C 3章 ACPQ CP-CQ △ABC CB・CA また BC: PC=4:3 一直線の方程式、2直線の関係 喫 3点 A (20,24), B(-4,-3), C(10, 4) を頂点とする △ABC について、辺BC を 883 2:5に内分する点Pを通り, ABCの面積を2等分する直線の方程式を求めよ。 p.140 EX 56

回答募集中 回答数: 0