学年

教科

質問の種類

数学 高校生

区分求積法についての問題です 1枚目はnのくくり出し方が分からなくて(赤線部の部分) 2枚目は②自体がよく分かりません 解説お願いします

282 0 n x/< 2 基本例題 164 定積分と和の極限 次の極限値を求めよ。 n/n+k n4 Ase 指針 hから (1) lim E n→∞k=1 ♡に h= 3 とばす 解答 みにする。 lim ① 与えられた和S, において, とき、②Tの第k項がf- S=Tの形に変形する。 n こ dx または lim 3-S 1が0になっただけー。 のように, 和の極限を定積分で表す。 その手順は次の通り。 YA を見つける。 ③ 定積分の形で表す。 それには (2) S=lim いて、口をめっちゃ よって S=lim Sw (2) lim Σ n→∞k=1 n-∞0 k=1 n (またはSof() f(x), 1/27 n k=1 と対応させる。 n 求める極限値をSとする。 (1) (n+k)³=(n+k) ³ - 1 (n+k)³ = 1 (1+2) ³ = n 1からn= 練習 次の極限値を求めよ。 ② 164 れに limimを (1) lim 2 Asin kr 2 n→∞k=n 100 n (n) の形になるような関数 f(x) をくくり出し, - ( 16 547) = √ ( 1 + x) ³ dx = [ 2 (1 + x)³] = ³² n (下にしていく。 1(k+n) (k+2n) 18 √ ( 12 ) = S(x) dx n 3 「だから 1 n-co₂_n k=1 ²² 20 ( 1 ² + 1) ( ^² + 2) ●)ここで、(x+1)(x+2) x+1 + n 1 a ると a=-1,b=1,c=1 14 / 0) 207 S=Sl= x + 1 + (x + 1)² + x + 2]dx 1 1 x+1 (x+1)x+2 面積 部 れを足していく n k 2 (n + k) ¹ = lim ¹ 2 (1+2) ³ n→∞nk=1 1 (1²--20g(x+1) +++ log(x+2) x+1 3 =1/12/+ +log- →dx n? 33/2 3 2 4 1 = = S₁ (x + 1) ² ( x + 2) dx b + (x+1)² x+2 0000 [(1) 琉球大, (2) 岐阜大】 EST p.hou 基本事項 重要 166\ とす y=f(x) M f(x) 0 12. k-1 kd-11* n n n n n <f(x)== n 参考 積分区間は, lim Z〇の形なら、すべて n→∞k=1 0≦x≦1で考えられる。 ◄f(x)=(1+x) ³ kn dx (x+1)(x+2) 右辺の分数式は,左のよ うにして、部分分数に分 解する。分母を払った 1=a(x+1)(x+2) ・+nen +6(x+2)+c(x+1)^ の両辺の係数が等しいと して得られる連立方程式 を解く。 もしくは、 x=-1,-2,0など適当 な値を代入してもよい。 1 (2) lim/m/s (eir+2ch+3ei++nek) nn [(2) 岩手大] p.289 EX139

解決済み 回答数: 2
数学 高校生

222. 3行目の恒等式が成り立つ理由は何なのでしょう? また、この左辺は (mx+n)-x^3(x-4)でもいいのでしょうか? どっちでどっちを引くかは決まっているのでしょうか?? 最後に、「s,tはu^2-2u-2=0の解」とありますが u^2-2u-2=0はどこから出... 続きを読む

0 00000 演習 例題2224次関数のグラフと2点で接する直線 関数y=x(x-4) のグラフと異なる2点で接する直線の方程式を求めよ。 [類 埼玉大] 基本199 指針▷次の①~③の考え方がある [ただしf(x)=x(x-4), s≠t]。3の考え方で解いてみよう。 ①点(t, f(t)) における接線が, y=f(x)のグラフと点 (s, f(s)) で接する。 (s, f(s)), (t, f(t)) におけるそれぞれの接線が一致する。 ③ y=f(x)のグラフと直線y=mx+nがx=s,x=tの点で接するとして、 f(x)=mx+nが重解s, tをもつ。 → f(x)-(mx+n)=(x-s)(x-t)^ 解答 y=x(x-4) のグラフと直線y=mx+nがx=s,x=t (st) の点で接するとすると、次のxの恒等式が成り立つ。 x³(x-4)-(mx+n)=(x−s)²(x−t)² (左辺)=x^-4x-mx-n (右辺)={(x-s)(x-t)}'={x2-(s+t)x+st}2 =x4+(s+t)2x2+s2t2-2(s+t)x-2(s+t)stx+2stx2 =x¹−2(s+t)x³+{(s+t)²+2st}x²−2(s+t)stx+s²t² 両辺の係数を比較して -4=-2(s+t) -m=-2(s+t)st ①から s+t=2 ③から m=-8 2JX ①, 0=(s+t)^2+2st ③, -n=s²t² ...... 4 これと②から ④から st=-2 n=-4 ②, ya NX 下の別解は、指針の①の考 え方によるものである。 10 <s≠t を確認する。 s, tu²-2u-2=0の解で,これを解くと u=1± √3 よって, y=x(x-4) のグラフとx=1-√3,x=1+√3の点 で接する直線があり, その方程式は y=-8x-4 別解y'′=4x-12x² であるから, 点 (t, t (t-4)) における接線の方程式は y-t³(t-4)=(4t³-12t²)(x-t) 5 y=(4t³-12t²)x-3t4+8t³ (*) x4-4x3=(4t3-12t2) x-3t+8t tと異なる重解をもつことである。 この直線がx=s (s≠t) の点でy=x(x-4) のグラフと接するための条件は, 方程式 (x-t)^{x^2+2(+-2)x+3t2-8t}=0 これを変形して よって, x2+2(-2)x+3t2-8t=0 Aの判別式をDとすると t2-2t-2=0 D=0 とすると このとき, Aの重解はs=-(t-2)=1+√3(複号同順) t=1±√3はピ-2t-2=0 を満たし 3+4+81³= -(t²-2t-2) (3t²-2t+2)−4=−4 D=(1-2)²-1·(31²-8t) = -2(t²—2t—2) これを解くと Aが, tと異なる重解 s をもてばよい。 t=1±√3 4t³-12t²=4(t²—2t-2)(t-1)-8=-8 ゆえに,(*) から よって, s≠tである。 y=-8x-4 SMA CH |√=3a おける すなわ この接 f( (t) Ot

回答募集中 回答数: 0
数学 高校生

解説OH🟰Kにしてますが他のものだと答え変わってきませんか? 私は辺の比からOHとBHを√2K、CH=√6Kと置きました

用いて、 求める CD +6 ECT 0 24 底面が (1) △OBH において, BH:OH = 1:1 より BH-1 A OH △OCH において, CH: OH =√3:1 より CH-√3 A OH OH = k(k>0) とおくと, BH=k, CH=√3k と表されるから、 ▲HBC において, 余弦定理により (√21) ²= k²+(√/3 k)2-2-k√3 kcos 150° 21=k²+3k² +3k² k2=3 k>0 より k=√3 よって BH=3, CH = 33, OH = 13 AH OHA=90°の直角二等辺三角形であるから 24 (1) BH OH CH OH CH= I OH = √ (2) SOAH = 45° とする このとき AH = BH = B Point o 難易度 ア , 9 すい 右の図のような四角錐 O-ABCD がある。 底面 ABCD は, 」各2 AD//BCの台形であり, 点Oから底面ABCDに下ろした垂線は, 対角線 AC と BD の交点Hを通る。このとき,BC=√21, ∠OBH = 45°、∠OCH = 30°, ∠BHC = 150° とする。 A 3つの角の大きさが45℃ 45℃ 90° の直角三角形の辺の比は ya 1:2:√3 オ 1:1:√2 3つの角の大きさが30℃ 90% 60° の直角三角形の辺の比は 目標解答時間 カ √2/45° 1 45° 1 1 であることを用いると, である。 (B 与えられた辺や角と求める辺や 角を合わせて, 3辺と1角のとき 27 余弦定理を用いる。 2 130° 12分 A √3 ve the 60% 1 B 図形と計量 H (45% 150° D /21 25 30 C (

未解決 回答数: 0
数学 高校生

このh=√21/7のhってどの部分ですか?

内(2) CD の EM を取り 正三角 (3) 0°< よって sin0=√1-cos' sin />0であるから AAEM= AE AM sin 0 2 = -1/2-2√7-3√/3/15 S= /21 5 = √1-(√²1)² = √15 6 3√ 35 2 1辺の長さが3の正三角形ABCを底面とし, PA=PB=PC=2 の四面体PABCにおいて頂 練習 170 点P から底面ABCに垂線PHを下ろす。 (1) PHの長さを求めよ。 (2) 四面体 PABC の体積を求めよ。 (3) 点Hから3点P, A, B を通る平面に下ろした垂線の長さんを求めよ。 P (1) APAH, △PBH, APCH はいずれ も∠H=90°の直角三角形であり PA=PB=PC, PHは共通 であるから よって AH=BH=CH A ゆえに,Hは△ABCの外接円の中心であり, AHは△ABC の外接円の半径であるから, △ABCにおいて, 正弦定理によ 3 り =2AH sin 60° APAH=APBH=APCH 3 よって 3 √3 AH= 3 2sin 60° 2 2 ÷ =√3 △PAH は直角三角形であるから, 三平方の定理により PH=√PA²-AH²=√22-(√3)=1 (2) 正三角形ABCの面積をSとすると 9 √3 3.3 sin 60° 2 2 2 よって,四面体 PABC の体積を Vとすると DAV= =1/23・S・PH= 1.9√3 4 • 6 ・1= 9√3 4 3√3 4 H B ←正弦定理により AB =2R sin 60° Rは△ABCの外接円の 半径で, R=AH である。 ←四面体PABCは三角 であり、 体積は 1/3×(底面積)×(高さ) で求められる。△ABC を底面とすると, 高さは PH。 4章 練習 [図形と計量]

未解決 回答数: 0