学年

教科

質問の種類

数学 高校生

確率の問題です。 自分はPを使わずに計算しようとしたのですが、私の解答の(ⅲ)(ⅳ)で参考書の答えと違っていました。 自分の式はどこから間違っているか教えてほしいです🙇

例題 190 同じものを含む順列と確率 1 確率の基本性質 383 **** T, 0, H, O, K, U, A, 0, B, A の 10 文字から何文字か取り出し, 横1列に並べるとき, 次の確率を求めよ. (1) 10 文字を横1列に並べるとき,どの2つの0も隣り合わない確率 (2)10文字の中から6文字を1列に並べるとき,どの2つの0も隣り合 わない確率 考え方 確率を考えるときは, 0, 02, 03, A1, A2 として, すべて異なるものとして考える (同様の確からしさ). 解答 (1) T, 01, H, Oz, K, U, A1, 03, B, A2の10個を 1列に並べる並べ方は, 10! 通り どの2つの0も隣り合わない並べ方は,まず0を除 いた7文字を並べ、 さらに7文字の間と両端の8箇所 から3箇所を選んでO1, Oz, 03 を並べるときで, 7!×gP3 (通り) 計算しない. 確率なので, あとで 約分する. 7!×P3. 7!×8・7・6 よって,どの2つの0も隣り合わない確率は, 7 10! 10・9・8×7! 15 (2)10文字の中から6文字を1列に並べる並べ方は, 10P6通り (i) 6 文字のうち0が3つのとき P3×4P3 (通り) (i) 6文字のうち0が2つのとき P4×32×5P2 (通り) (ii) 6文字のうち0が1つのとき 7P5X3C1×6P1 (5) (iv) 6文字のうち0が含まれないとき P6通り よって, (i)~(iv)より, 求める確率は, P3×4P3+ P4×32×5P2+P5×3C1×6P1+P6 ^ ^ ^ ^ ^ ^ ^ ^ 7!X&P3 約分しやすく工夫す る。 0の数によって順列 の総数が異なるため、 場合分けして考える. ☐ ☐ ☐ ^ ^ ^ ^ 7P3×4P3 ^ ^ ^ ^ ^ 7P4X3C2X5P2 ↑ 01 02 03 のうち, どの0を選ぶか. 7 10 10P6 Focus 確率を考えるときは、 同じものも区別する (同様の確からしさ) 第7章

解決済み 回答数: 1
数学 高校生

写真一枚目の(3)についての質問です。 (3)では放物線と円の間の面積を積分で求めています。 しかし、面積内に扇形が含まれていることから 扇形部分と積分部分の二つに分けて面積を求めています。 求める面積全体は写真二枚目で図示されているのですが、 どこからが扇形部分でどこから... 続きを読む

110 面積 (VI) 放物線y=ax-12a+2 (0<a</1/2) ・① を考える. 放物線 ①がαの値にかかわらず通る定点を求めよ 2 放物線①と円 x2+y2=16 く ...... ・・・ ② の交点のy座標を求めよ. (3) a= のとき, 放物線 ①と円 ② で囲まれる部分のうち, 放物 線の上側にある部分の面積Sを求めよ. (1) 定数αを含んだ方程式の表す曲線が, αの値にかかわらず通る 定点を求めるときは、式をαについて整理して, a についての恒 等式と考えます (37) (2) 2つの曲線の交点ですから連立方程式の解を求めますが, y を消去すると の4次方程式になるので, x座標が必要でも,まずxを消去してyの2次 方程式にして解きます. (3)面積を求めるとき,境界線に円弧が含まれていると, 扇形の面積を求める ことになるので,中心角を求めなければなりません. だから, 中心〇と交点 を結んだ線を引く必要があります。 もちろん,境界線に放物線が含まれるの 定積分も必要になります。 解答 LT (1) y=ax2-12a+2 より a(x²-12)-(y-2)=0 aについて整理 これが任意のαについて成りたつので [x2-12=0 y-2=0 :.x=±2√3,y=2 (2) よって, ① がαの値にかかわらず通る定点は (±2√3,2) y=ax²-12a+2 ...... ① |x2+y2=16 ②より,x2=16-y' だから ①に代入して 対称文と 他をまとめる

解決済み 回答数: 2