学年

教科

質問の種類

数学 高校生

この問題で丸ついてあるとこのように√5.2になりました。√5.2を2.3と求めるのはどうやったらいいのですか? よかったら教えてください🙇‍♀️

x のデータは,ある商品 A, Bの5日間の売り上げ個数である。 B4, 6,8, 3,9 Bの変量をそれぞれx,yとするとき, 次の問いに答えよ。 A 5,7,4,3,6 (単位は個) xyのデータの平均値,分散,標準偏差をそれぞれ求めよ。 ただし,標準偏 差については小数第2位を四捨五入せよ。 のデータについて,標準偏差によってデータの平均値からの散らばり の度合いを比較せよ。 /p.302 基本事項 1 182 (1) 変量xのデータがX1, X2, ······, xn² で, その平均値がxのとき, 分散 s2 は 1 s²=x²-(x)² ② s'={(x-x)+(x^2-x)+..+(xn-x)} 定義に基づいて計算 n (2) 標準偏差 (分散)が大きいことは,データの平均値の周りの散らばり方が大きいこ との1つの目安である。 (1) x,yのデータの平均値をそれぞれx,yとすると X= 1 (5+7+4+3+6)=5(個), y=1/13 (4+6+8+3+9)=6(個) 平均値はと x,yのデータの分散をそれぞれ sx2, Sy2 とすると 5 整数 Sx =1/12 (5°+72+4°+3°+62)-52=2, sy =1/13 ( 4°+6°+8°+3°+9°)-62=5.2 よって,標準偏差 は Sx=√2=1.4 (個), sy=5.22.3(個) (2) (1) から Sy>Sx ゆえに,yのデータの方が散らばりの度合いが大きい。 を量っ 右の表は, A 工場, B工場の同じ規格の製品30個の重さ 2 ts+m 分散の計算は、解答では指針 ① を用いたが、 指針 ② を用いて次のように計 算してもよい。 1 EF s={(5-5)²+(7-5)+(4-5)²+(3-5)²+(6-5)²}=2 ²= {(4-6)² + (6—6)² + (8-6)²+(3−6)²+(9−6)²}=5.2 ①と② どちらを用いるかは, ①のxと②の(x-x)', どちらの計算がらく かで判断するとよい。 (2.25)²=5.0625 (2.3)=5.29 20 製品の 個数 重さ(g) A 工場 B工場 3.6 3 0 3.7 4 1 6 2

回答募集中 回答数: 0
数学 高校生

1次不等式での場合分けで、写真のように x<0、x=0、0>xで分ける時とx≧0、x<0で分ける時。 何を見て使い分ければいいのですか🥲

56 F 例題 31 文字係数の不等式 定数とする。 次の不等式を解け。 ax+2>02 CHART & THINKING 文字係数の不等式 (1) Tax+2>0 D5 ax>-2 割る数の符号に注意 (2) 58 不等式 Ax > B を解くときは, A > 0, A = 0, A <0 で場合分けをする。( aが正の数のときは上の解答でよいが, 負の数のとき不等号の向きはどうなるだ HART & SOL また,a=0のときは両辺をaで割るということ自体ができない。 解答 (1) ax+2>0 から [1] a>0 のとき [2] α=0 のとき, 不等式 0.x> -2 はすべての実数x に対して成り立つから, 解はすべての実数。 [3] α <0 のとき [1] A>0 のとき (2) ax-6>2x-3α から [2] A=0 のとき ax>-2 x>. 注意 2 両辺をαで割って x>0」では誤り」最初, Aの箱には -(2) ax-6>2x-3a32 x> 2 a よって (a-2)x>-3(a-2) [1]α-2>0 すなわちa>2のとき 両辺を正の数α-2で割って x>-3 [2] a-2=0 すなわち α = 2 のとき 不等式 0.x> 30 には解はない。 [3] a-2<0 すなわちa<2のとき 両辺を負の数 α-2で割って x<-3 INFORMATION 2 a fax> ax-2x>3a+6 >A+x ad 不等式 Ax > B の解 B / 不等号の向き A は変わらない [3] A <0 のときx< B 不等号の向き A が逆になる B≧0ならば解はない B<0 ならば解はすべての実数 Tot 本例題 32 1 の箱の重さは 95g, これらをAとB の箱からBの箱に 不等式が Ax≧B の場合は, A=0 のとき 「B>0」ならば解けない IRCO AJENS O 文章題の解法 ① 変数を適当 ②解が問題の 最初, Aの箱の球を ます, Ax, Aの箱の球 次に作るこうしてで A<0 で場合なお, xは自然数 a=0のときは に a=0を代 解答 する。 すべて最初, Aの箱 対 A,Bの重 95 整理して α-2は正のAの箱から 不等号の向きな A,Bの URKHOL α-2は負の数 x 不等号の向きは①と② は自然 共 したがっ 例 [0.x>5 0.x>0 (0.x>-5 VON MA 08 解はな *** 整理し *** 解はの PRAC (1) 筆 る (2)

回答募集中 回答数: 0