学年

教科

質問の種類

数学 高校生

1番がよく分かりません、25ってどこからきたんですか

2 3-√8 に答えよ. -の整数部分を α 小数部分をbとするとき, 次の問い (1) α, bの値を求めよ. (2)6+106の値を求めよ. 2 (3) + 2 の値を求めよ. 6+3 6+7 解答 2 2 まず, 3-√8 -=2(3+√8)=6+4√2 (1) 2532 <36 より, 5<4√2 <6 だから |精講 = (1)整数部分,小数部分は,単語の雰囲気で判断してはいけません。 定義(最初の約束事) に従って考えます。 1<√2<2 を使っても, 4<4√2 <8 となって, a が求まりま (2)62+106=(6+5)2-25 =(4√2)2-25=32-25=7 (3) (解Ⅰ) 6+3=4√2-2,6+7=4√2+2 6+5ならば、 2乗がラク 11 <6+4√2 <12 よって, a=11,6=(6+4√2)-114√2-5 注 <有理化 9 無理数の大小 較 2 2 1 1 よって, + + 6+3 6+7 2√2-1 2√2+1 〔定義〕 実数xがx=n+α x 2.7 (n は整数,0≦α<1) 4-3 π -1.4 (解Ⅱ) (II) +6+7 2 2 b+3 と表せるとき, n, α をそれぞれ, xの整数部分 小数部分という (右表参照). n 2 1 3 -2 a 0.7 また,整数部分は記号 [x] (153) で表され 13 π-3 0.6 (2√2+1)+(2√2-1)_4√2 - (2√2-1) (2√2+1) 7 2(6+7)+2(6+3) (6+3)(6+7) 4(6+5) 62+106+21 4・4√2 4√√21 = 7+21 7 こともあります. け 小数部分は必ずしも小数で表す必要はありません. α=x-n を利用 して求めます.また,下の数直線からわかるように, rの整数部分とは, その数のすぐ左にある整数を表します。 ポイント 整数部分,小数部分はその定義に従って考 小数部分は,必ずしも小数を用いて表す必 -2 -1.4-1 0 -I 2.7 π 4 3 で求めたもの値を直接代入しても答は出ますが,bの係数に着目すると 式の特徴を見ぬく力), 計算の負担が軽くなります。 2つの手段が考えられます。 この値を代入して通分する. 二通分して, bの値を代入する。 演習問題 10 ① 正の数のとき, 整数部分とは小数点以下を切り とです. このイメージは153のような整数の問題 ②負の数になると, 小数点以下切り捨てという なるので,整数部分という言葉が登場します. 整数部分を小数部分をbとする

未解決 回答数: 1
数学 高校生

写真の質問に答えてください!

64 発展例題 |2次方程式x-mx+2m=0 が整数解のみをもつような定数mの値と,そ のときの整数解をすべて求めよ。 方程式の整数解 (=整数の形にする ① 2つの整数解を α, β (α≦β) として、 解と係数の関係を利用。 α+β=m, aβ=2m ②①の2式からmを消去し, ()() =整数の形を導く。 ③②で導いた式を,右辺の整数の約数を考える方法で解く。 4,B,Cが整数のとき, AB=C ならば A,BはCの約数 CHART GUIDE 解答 2次方程式x-mx+2=0が2つの整数解 α, β(a≦B) を | ←α=β のときは,重解を もっとすると、解と係数の関係から α+β=m, aβ=2m もつ。 を消去すると aß-2a-28-0 22 から ゆえに すなわち ...... aβ=2(a+β) a(B-2)-2(B-2)-4=0 (a-2)(B-2)=4 よって Bは整数であるから,α-2, β-2 も整数である。 より、α-2≦B-2 であるから,α-2, B-2 の値の組は (a-2,B2, -2,-2),(1,4), (22) ですか? ist (a, B)=(-2.4.2009 このα, βの値の組に対するmの値は、①からそれぞれ m=-1, 0,9,8 したがって求める の値とそのときの整数解は m=-1 のとき x=-2, 1 m=0 のとき x=0 m=8のとき x=4 m=9のときx=3,6 ←mも整数である。 ←一般にxy+ax+by =(x+b)(y+α)-ab 左の変形では, x=α, y=β, a=-2,b=-2 としている。 ←4の約数は 2章 ←m=a+β ±1, ±2, ±4 負の数も忘れないように。 発展学習 ←m=0,8のときは重解。 2次方程式の整数解を求める問題の中には, 「整数解ならば実数解であるから,判別式 D≧0」によって,係数の値の範囲をしぼり込んでいく考え方が有効な場合もある。 ただし、上の例題では, 判別式 D=(-m)²-4・2m≧0から m≧0,8≦m となり, [mの値をしぼり込むことはできない。 ] 64 2次方程式x+(m-2)x+10-m=0が整数解のみをもつような定数 m の値

未解決 回答数: 1