学年

教科

質問の種類

数学 高校生

至急教えて頂きたいです🙇‍♀️🙇‍♀️ 解き方教えてください🙏

16 目標解答時間 8分 35 難易度 関連する基本問 ある温泉施設では,入館料を支払うことで温泉が利用でき、入館料に加えて岩盤浴利用料を 支払うことで温泉と岩盤浴の両方が利用できることになっている。ただし、岩盤浴のみを利用 することはできない。 大人料金と子ども料金は,それぞれ次のようになっている。 大人 子ども 入館料 800 円 600円 岩盤浴利用料 400円 300円 以下では,大人料金対象者を「大人」, 子ども料金対象者を「子ども」とし、入館料を支払っ た利用者を「温泉利用者」 さらに岩盤浴利用料を支払った利用者を 「岩盤浴利用者」とする。 この温泉施設の利用者の傾向について調べたところ、 次のことがわかった。 「温泉利用者」 の90%が 「大人」 である。 「温泉利用者」 の80%が 「 岩盤浴利用者」である。 「岩盤浴利用者」 の5%が 「子ども」 である。 「温泉利用者」がこれらの傾向に従うと仮定するとき, 「温泉利用者100人あたりの内訳」を 表に整理し, 問いに答えよ。 <温泉利用者100人あたりの内訳〉 (単位:人) 岩盤浴利用者 岩盤浴利用者でない 計 大人 (A) (B) (G) 子ども (C) (D) (H) 計 (E) (F) 100 ア %である。 (1)「温泉利用者」のうち, 「子ども」 の 「岩盤浴利用者」は (2)「温泉利用者」 のうち, 「大人」 の 「岩盤浴利用者」は イウ %である。 (3) 「子ども」の「温泉利用者」のエオ%が,「岩盤浴利用者」 である。 (4)「温泉利用者」一人あたりが支払う入館料と岩盤浴利用料の合計金額の期待値は カキクケ 円である。 (配点 10) (公式・解法集 43 44

回答募集中 回答数: 0
数学 高校生

至急教えて頂きたいです🙇‍♀️‼️ 解き方教えてください🙏

16 目標解答時間 8分 35 難易度 関連する基本問 ある温泉施設では,入館料を支払うことで温泉が利用でき、入館料に加えて岩盤浴利用料を 支払うことで温泉と岩盤浴の両方が利用できることになっている。ただし、岩盤浴のみを利用 することはできない。 大人料金と子ども料金は,それぞれ次のようになっている。 大人 子ども 入館料 800 円 600円 岩盤浴利用料 400円 300円 以下では,大人料金対象者を「大人」, 子ども料金対象者を「子ども」とし、入館料を支払っ た利用者を「温泉利用者」 さらに岩盤浴利用料を支払った利用者を 「岩盤浴利用者」とする。 この温泉施設の利用者の傾向について調べたところ、 次のことがわかった。 「温泉利用者」 の90%が 「大人」 である。 「温泉利用者」 の80%が 「 岩盤浴利用者」である。 「岩盤浴利用者」 の5%が 「子ども」 である。 「温泉利用者」がこれらの傾向に従うと仮定するとき, 「温泉利用者100人あたりの内訳」を 表に整理し, 問いに答えよ。 <温泉利用者100人あたりの内訳〉 (単位:人) 岩盤浴利用者 岩盤浴利用者でない 計 大人 (A) (B) (G) 子ども (C) (D) (H) 計 (E) (F) 100 ア %である。 (1)「温泉利用者」のうち, 「子ども」 の 「岩盤浴利用者」は (2)「温泉利用者」 のうち, 「大人」 の 「岩盤浴利用者」は イウ %である。 (3) 「子ども」の「温泉利用者」のエオ%が,「岩盤浴利用者」 である。 (4)「温泉利用者」一人あたりが支払う入館料と岩盤浴利用料の合計金額の期待値は カキクケ 円である。 (配点 10) (公式・解法集 43 44

回答募集中 回答数: 0
数学 高校生

至急お願いします🙏 この問題の解き方教えてください🙏

16 35 難易度 ★★ 目標解答時間 8分 関連する基本問 ある温泉施設では,入館料を支払うことで温泉が利用でき、入館料に加えて岩盤浴利用料を 支払うことで温泉と岩盤浴の両方が利用できることになっている。ただし,岩盤浴のみを利用 することはできない。 大人料金と子ども料金は, それぞれ次のようになっている。 入館料 岩盤浴利用料 大人 800円 400円 子ども 600円 300円 以下では,大人料金対象者を「大人」, 子ども料金対象者を「子ども」とし、入館料を支払っ た利用者を「温泉利用者」, さらに岩盤浴利用料を支払った利用者を 「岩盤浴利用者」とする。 この温泉施設の利用者の傾向について調べたところ、次のことがわかった。 . 「温泉利用者」の90%が 「大人」である。 「温泉利用者」 の 80% が 「岩盤浴利用者」 である。 ・「岩盤浴利用者」 の5%が 「子ども」である。 「温泉利用者」がこれらの傾向に従うと仮定するとき, 「温泉利用者100人あたりの内訳」を 表に整理し、 問いに答えよ。 <温泉利用者100人あたりの内訳〉 (単位:人) 岩盤浴利用者 岩盤浴利用者でない 計 大人 (A) (B) (G) 子ども (C) (D) (H) 計 (E) (F) 100 ア %である。 (1)「温泉利用者」 のうち, 「子ども」 の 「岩盤浴利用者」は (2) 「温泉利用者」のうち, 「大人」 の 「岩盤浴利用者」は イウ %である。 (3) 「子ども」の「温泉利用者」のエオ%が、 「岩盤浴利用者」 である。 (4)「温泉利用者」一人あたりが支払う入館料と岩盤浴利用料の合計金額の期待値は カキクケ 円である。 (配点 10 ) (公式・解法集 43 44

回答募集中 回答数: 0
数学 高校生

この問題が分かりません。明日に授業で発表しなくてはなりません。どなたか教えてください。お願いします。

36 難易度 ★★ 目標解答時間 15分 0 を原点とするxy 平面上において,最初、 点 (1,0) にある点Pと点(0, 2) にある点Qが,次の 規則にしたがって移動する。 E [規則] さいころを1回投げて は (a) 1または2の目が出たとき,点Pはx軸方向に +1進み, 点 Qは動かない。 Q₁ (b) 1と2以外の目が出たとき,点Qはy軸方向に +1進み, 点 Pは動かない。 2 S 0 この試行を何回か繰り返したときの点P,Qについて,二つの線 分OP, OQを隣り合う2辺とする長方形の面積をSとする。 (1) さいころを3回投げたとき, S9 になる確率は ア である。 (2) さいころを1回投げたとき, 1または2の目が出るという事象をAとする。 さいころを5回投げ たとき,5回ともAが起こる場合は S ウエ であり, 4回だけ A が起こる場合は S オカ 確 率 である。 (3) さいころを5回投げたときについて考える。 S= ウエ になる確率は キ ク であり, S=オカ ケコ になる確率は 。 である。 また, S≧ ウエ であるとき、点Pのx座標が4以下である条件 サシ 付き確率は [スセソ タチツ である。 (4) さいころを3回投げたときのSの値に対して得点を与える次の二つのゲームがある。 ゲームI: S= 9 であれば9点, その他のときは0点 ゲームII: S = 5 であればα点, その他のときは0点 ただし, αは自然数とする。 二つのゲームを比較し,正の得点を得る確率は テ 。 テ | の解答群 ⑩ ゲームIの方が大きい ① ゲームII の方が大きい ②どちらも同じである 得点の期待値が大きい方のゲームを選ぶことにする。 ゲームII が選ばれるようなαの値の範囲は a≥ である。 (配点 15 ) (公式・解法集 40 42 43 44

回答募集中 回答数: 0
数学 高校生

解放2です。

基本例 点がF(3,0), F'(-3, 0)で点A(-4, 0) を通る楕円の方程式を求めよ。 p.585 基本事項 重要 149、 解法 1. 焦点の条件に注目。2つの焦点はx軸上にあり、かつ原点に関して対称であ あるから求める楕円の方程式は 1 (40) とおける。 焦点や長軸短軸についての条件に注目し, a, bの方程式を解く。 解法2. 楕円上の点をP(x, y) として、 楕円の定義 [PF+PF' = (一定)」に従い, 点 の軌跡を導く方針で求める。 |解法 1. 2点F(30) F'(-3, 0) が焦点であるから, 求 1焦点は2点 める楕円の方程式は 4-2 + 92 b2 ここで a2-b2=32 =1 (a>b>0) とおける。 A (-4, 0) は長軸の端点である から a=|-4|=4 y √7 (√a²-b², 0). (-√a²-6ª, 0) 焦点のx座標に注目。 y座標が0であるから, 楕円の頂点。 a b よって62=q-32=42-9=7 ゆえに、求める楕円の方程式は F' -3 0 3 4x ここではの値を求め なくても解決する。 x2y2 長軸 17 va2-62 =1 7 すなわち +2 =1 16 7 PがAに一致するとき? 解法 2. 楕円上の任意の点をP(x, y) とすると PF+PF'=AF+AF'=|3-(-4)|+|-3-(-4)|=8 <F, F′, A はx軸上の よって ゆえに √(x-3)2+y2+√(x+3)+y2=8 <PF+PF'=8 √(x-3)2+y2=8-√(x+3)2+y2 両辺を平方して整理すると 16√(x+3)2+y2=12x+64 両辺を4で割って, 更に平方すると 整理して 16(x2+6x+9+y2)=9x2+96x+256 7x2+16y2=112 よって、求める楕円の方程式は 16 7=1 ここでがなくな 次のような楕円の方程式を求めよ。 9 (1) 2点(20)(20) 焦点とし、この2点からの距離の和が6 (2)楕円 x2y2 3 5 =1と焦点が一致し、 短軸の長さが4 (3)長軸がx軸上,短軸がy軸上にあり、2点(-2.0) (1,2)を通る。 p.603

回答募集中 回答数: 0
数学 高校生

(2)を解き、答えもあっていましたが、私の答案の書き方で直した方がいいところを教えてください。

4 サイコロ型・ (1) 2個のさいころを同時に投げるとき, (i) 目の数の差が2である確率はいくらか. (ii) 目の数の積が12である確率はいくらか. (2)3個のさいころを同時に投げるとき,あるさいころの目の数が残りの2つのさいころの目の 数の和に等しい確率はいくらか. ( 椙山女学園大) 1 2 3 4 5 6 O O O さいころは区別する 目はさいころ1つにつき6個あるから, 2個投げ た場合,目の出方は36(=62) 通りあってこれらは同様に確からしいさい ころ2個であれば右のような表を書いて条件を満たすところに印をつける (図は目の数の和が6の場合で確率は5/36) という解法も実戦的と言える. さて,右表で「1と2の目が出る」 は2か所にあるが,これは 「区別できる さいころに1と2の目を割り当てるとき, 割り当て方は2通りある」 という 5 O ことである. ゾロ目は割り当て方が1通りなので表でも1か所ずつである. 6 12345 10 まず目の組合せを調べる さいころが3個以上のときは,表を書いて解くのは大変である. 上で述 べたように,まず目の組合せを調べ, 次にどの目をどのさいころに割り当てるかを考える. ③ (a,b,c)の関係性の国立 (サイコロ) 解答 ①サイコロ ②出に目一列に並べる→口 サイプわりわてるふり (1) 2個のさいころを区別し, A, B とすると, 目の出方は62=36通りあり, 表を使って解いてもよい。 これらは同様に確からしい. (i) 目の組合せは {3, 1}, {4, 2}, {5, 3}, {6, 4}の4通りで,どちらがAでAが3, Bが1とAが1. Bが あるかで各2通り。 よって出方は4×2=8通り. 求める確率は 8 2 36 9 など2つの目が異なるので割り 当て方は2通りずつ(Ⅱ)も同 様 (17 (i) 目の組合せは {2,6}, {3,4} だから, (i) と同様に目の出方は 4 1 2×2=4通り. よって確率は = 36 9 (2) さいころを区別すると, 目の出方は 63=216通りある. ←同様に確からしい. 3つの目を a, b, c として, a=b+c を満たす(a,b,c) [ただしbsc] を調 ここは3つの目の組合せ. べると, (2, 1, 1), (3, 1, 2), (4, 1, 3), (4, 2, 2), wwwwwwww wwwwwww (5, 1, 4), (5, 2, 3), (6, 1, 5), (6, 2, 4), (6, 3, 3) wwwwww ←αが小さい順, αが同じならが 小さい順. 目の割り当て方は,が各3通り,それ以外は各3!=6通りあるから,216 ~ は,異なる目をどのさいこ 通りのうち、条件を満たすような目の出方は ろに割り当てるかで3通り. 3×3+6×6=45 (通り) ある. 全ては等確率では出 45 5 ません!! 従って、求める確率は 216 24 4 演習題 (解答は p.47) 1から6までの目をもつ立方体のサイコロを3回投げる。 そして 1,2,3回目に出た目 をそれぞれ a, b, c とする. (1) a, b, c を3辺の長さとする正三角形が作れる確率を求めよ. (2)/α,b,cを3辺の長さとする二等辺三角形が作れる確率を求めよ。 (3) a, b, c を3辺の長さとする三角形が作れる確率を求めよ. (滋賀医大) まず a b c の組合せを 列挙する. 何かが小さい 順など, 系統的に数えよ う. (1) (2) 以外は3辺 の長さが相異なる. 37

回答募集中 回答数: 0