学年

教科

質問の種類

数学 高校生

⑴でどうしてHは重心だと分かりますか?

262 第4章 図形と計量 Think **** 例題137 正四面体の種々の量 1辺の長さが4の正四面体OABC で、辺BCの中点をMとして ∠OMA=0 とする.また,頂点Oから平面ABCに下ろした垂線の足を Hとする。 次の値を求めよ. (1) cose (3) △ABCの面積S (5) 正四面体の内接球の半径r [考え方] 3r 0 √3 OM=AM= -a 2 Sing OH OM B A 正四面体の内接球の半径 内接球の中心をIとすると, OI, AI, BI, CI で, 四面体を4つ の三角錐に分割したとき,それぞれの角錐の高さが内接球の半 00012001 径になる。)に つまり、内接球の半径は, 三角形の面積を分割して内接円の半 径を求めたアイデアと同様に,分割してみる. 正四面体の外接球の半径 外接球とは4点 0, A,B,Cを通る球で, 対称性を考えれば, 内接球の中心と外接球の中心は一致する. 1x8-0014 2 外接球の半径はOIになることを利用する. B "00200001+ 7802 VOS Joat Fred DOT 解答 ∠OMA を含む △OAM に着目すると, cos A= (2) sin=√1-cos20 Foa また, 対称性より, 点Hは△ABC の重心である。 (1) 点Hは線分 AM を 2:1に内分 する. ここで, (2) OHの長さを 求めるから, 辺 OH を含む △OMH において, HM 3 OM 正四面体は左の図のように回転させても同じような立 体の状況になる. (2) OH の長さ (4) 正四面体の体積V >(6) 正四面体の外接球の半径R このように図形や立体が対称性をもつ場合,その性質 を利用して考えるとよい = △OMH において, OH=OM sin O =- 2 =√₁-( 13 ) ² = ²43 ² 2√2 AM AM 3 √32√2√6 ax. 3 3 a 0-0000-2001 EVO2-00-7 0 EV02 + 02-0A 7 H H $300 10CA 0 Baie DA JA -1-02) B V3 2 000 M nia C SUA -a=AM M 11/13 AM A Jes=1 B 0600 I a 2 B M C 重心については p.426 参照 sin' +cos20=1 を 利用 A BET 881

回答募集中 回答数: 0
数学 高校生

(2)についてです。 Sinθ<0、2Sinθ+1が>0の時 Sinθ>0、2Sinθ+1<0の時 の2パターンに分けて場合分けしないのは何故ですか?😭

252 第4章 三角関数 Check 例題 137 三角方程式・不等式(②2) 0≦0<2πのとき,次の方程式・不等式を解け. (1) 2sin-cos0-1=0 考え方 まず, 三角関数の種類を統一する. Focus 解答 (1) sin=1-cos' を与えられた方程式に代入して, 2 (1-cos20) - cos0-1=0 2 cos²0+cos 0-1=0 つまり, sin²+cos20=1 などを用いて, sin0 だけ, cos0だけなどの形にする。 また, coso, sine のとり得る値の範囲に注意する. (cos0+1)(2cos0-1)=0 11 ここで, 0≦0<2πより, -1≤cos 0≤1 1 よって、 cos0=-1, ≤0<2π T, cos0=-1, を解いて, (2) 2cos20-sin0-2>0 5 3 (2) cos20=1-sin' を与えられた不等式に代入して, 2(1-sin²0)-sin0-2>0 p 0=7, ₁ 9= り、 2 sin²0+sin 0 <0 sin0(2sin0+1) < 0 ここで, 0≦0<2πより, よって, <sin0 <0 0≦02 で, 2 -1sin0≦1 <sin0 <0 を解いて, T <0<,<0<2n <2π 種類の統一 sin ²0+coste=1 costの式に統一する cose のとり得る値の 範囲を確認しておく VAI -1 T 三角方程式・不等式 注〉例題 137 では,(1) cos0=t (2) sin0=t とおいて考えてもよい。 co/cr/ 5 2 T 3 sin の式に統一する . π ** sin0のとり得る値の 範囲を確認しておく. YA 7 6 RYO H 1 A011 x 2 π 3 11 6 E π Che 例 1 1x 見 「考え 解

回答募集中 回答数: 0
数学 高校生

何で重解から考えるんですか?

282 第4章 関数の極限 Check 例題124 無理関数のグラフと直線 ・・① のグラフと直線y=x+k•••••• ② との共 関数 y=√2x-1 有点の個数を調べよ.ただし,k は実数の定数とする. 考え方 まず無理関数 y=√2x-1 のグラフをかく. 次に,kの変化に応じて,直線を動かして考える. 直線を上から下に平行移動するとき, 次の2つに注意 すれば、共有点の個数の変化がつかみやすくなる。 ① 曲線 ①と直線②が接するときのんの値 図] 直線②が曲線 ①の端点 (121, 0) を通るときのん CARAC の値 つまり,①を境として共有点の個数が 850 0個→1個→2個 を境として共有点の個数が 2個→1個 解答 ①のグラフは右の図のように なる. na まず①,②のグラフが接する ときのんの値を求める. ① ② より 両辺を2乗すると, Focus √2x-1=x+k k</1/2,k=0のとき. 2' <0 のとき, 共有点の個数はグ を対称軸とす とそれぞれ変化する. 2 YA 34+05-\ flampa 1- 845 VAS Ø 1 1 MX 2 2個 (2) (1) 48 2x-1=(x+k)2 より, x2+2(k-1)x+k²+1 = 0 LEDS この方程式の判別式をDとすると, 重解をもつから, D =k-1)-(k²+1)=-2k=0 より, k=0 次に、直線②が点 ( 12.0)を通るときのたの値を求める。②にx=yal を (☆) 0= 1/2+kk), k=- 代入する. 2 以上より, ①,②のグラフの共有点の個数は, >0のとき、 0個 1個 eta + (a y=√2x-1 y=x+k 2 y=√/2x-1 ①のグラフと数本の 当な②のグラフをかく y = √(√2(x - 1) ①のグラフは y=√2x のグラフを x 軸方向に1/だけ 行移動したもの 接する重解をもつ ⇔D=0 グラフで確認する。 ん の値の減少により、 ②は下方に平行な動 る.

回答募集中 回答数: 0