数学
高校生

⑴でどうしてHは重心だと分かりますか?

262 第4章 図形と計量 Think **** 例題137 正四面体の種々の量 1辺の長さが4の正四面体OABC で、辺BCの中点をMとして ∠OMA=0 とする.また,頂点Oから平面ABCに下ろした垂線の足を Hとする。 次の値を求めよ. (1) cose (3) △ABCの面積S (5) 正四面体の内接球の半径r [考え方] 3r 0 √3 OM=AM= -a 2 Sing OH OM B A 正四面体の内接球の半径 内接球の中心をIとすると, OI, AI, BI, CI で, 四面体を4つ の三角錐に分割したとき,それぞれの角錐の高さが内接球の半 00012001 径になる。)に つまり、内接球の半径は, 三角形の面積を分割して内接円の半 径を求めたアイデアと同様に,分割してみる. 正四面体の外接球の半径 外接球とは4点 0, A,B,Cを通る球で, 対称性を考えれば, 内接球の中心と外接球の中心は一致する. 1x8-0014 2 外接球の半径はOIになることを利用する. B "00200001+ 7802 VOS Joat Fred DOT 解答 ∠OMA を含む △OAM に着目すると, cos A= (2) sin=√1-cos20 Foa また, 対称性より, 点Hは△ABC の重心である。 (1) 点Hは線分 AM を 2:1に内分 する. ここで, (2) OHの長さを 求めるから, 辺 OH を含む △OMH において, HM 3 OM 正四面体は左の図のように回転させても同じような立 体の状況になる. (2) OH の長さ (4) 正四面体の体積V >(6) 正四面体の外接球の半径R このように図形や立体が対称性をもつ場合,その性質 を利用して考えるとよい = △OMH において, OH=OM sin O =- 2 =√₁-( 13 ) ² = ²43 ² 2√2 AM AM 3 √32√2√6 ax. 3 3 a 0-0000-2001 EVO2-00-7 0 EV02 + 02-0A 7 H H $300 10CA 0 Baie DA JA -1-02) B V3 2 000 M nia C SUA -a=AM M 11/13 AM A Jes=1 B 0600 I a 2 B M C 重心については p.426 参照 sin' +cos20=1 を 利用 A BET 881
図形と計量

回答

まだ回答がありません。

疑問は解決しましたか?