学年

教科

質問の種類

数学 高校生

aは集合Aの要素とはどういう意味ですか? また、集合Aが集合Bに含まれるのとどのように違うのですか?

NMURI 37 (1 2 ③ などで 表現にできる きる る POSS Ⅰ. 2つの集合に対して使う記号 (=,,,,U) ① 見ての通り2つの集合が同じものということです。合 B ② ⊂ ⊃: ACB とは 「集合Aが集合B 第2章 [21] に含まれる」ということで, ベン (Venn) 図にすると (a) <図I> の状態です. ③n, U ルの両方に含まれる部 「集合A と集合B A∩Bとは <図I> ・B- A ・B 14 AND わせる 「分」を指し, AUB とは「集合A, 集合 Bの少なくとも一方 に含まれる部分」を 4RE A∩B AUB <図II> 指します。ベン図にすると,〈図II 〉の状態です. Ⅱ. 1つの集合とその要素に対して使う記号 (,,,) とは,「αは集合Aの要素である」という意味です。 III は空集合を表す記号で,{}という書き方もあります。 空集合とは、全く要素をもたない集合のことです。 解答 (1) PQ は12の倍数を表す集合だから, RCPNQ ア・・・① 注 P,Q,R の包含関係は, 右図のようになっています (2)32は4の倍数であるが, 6の倍数でも24の 倍数でもない. 演習問題 21 R POQORも表現として よって、Q したがって, イ・・・ ② は正しいが選択肢にない (1) 21において, POQに属する最小の自然数 αを求めよ. (2) a ウ R である. ただし, ウ は 〈解答群I> から選べ.

解決済み 回答数: 1
数学 高校生

写真の付箋に書いてあるところが分かりません 教えていただけると嬉しいです…!

第2章 確率分布と統計的な推測 (103) B2-7 B2.5 赤い本が2冊, 青い本がn冊ある。このn+2 (冊)の本を無作為に1冊ずつ選び、本棚に 左から並べていく。2冊の赤い本の間にある青い本の冊数を Xとするとき,Xの平均と分 散を求めよ べ方は, (n+2)! 通りである. n+2 (冊) の本は区別がつくとすると, これらすべての 2冊の赤い本の並べ方は2通り X=k (2冊の赤い本の間に青い本がん冊並ぶとき,ただ し, 0≦k≦n) のとき, すべての本の並べ方を考える. nPk= n! (n-k)! よって, (+2)! ここで, (分子)=2. n! (n-k)! (n-k+1) ・(n-k)! 2冊の赤い本の間に, n冊の青い本からk冊を選んで並べ る方法はP通り 赤い本2冊とその間の青い本冊を1組として,この1組 残り冊) の青い本を並べる並べ方は (n-k1.通り 2139 以上から,X=kとなる本の並べ方は, 2.„P (n-k+1)! 通りである. P(X=k)=2mPkn-k-1)! を利用する。 なぜ? =2n..(n-k+1) 分母)=(n+2)(n+1).n!」 PAGE A OS X これらから, P(X=k)=- 2(n-k+1) (n+2)(n+1) ......① a よって, X の平均は、 OS 2 EX) = 0・・ =+k-- 2(n-k+1) a EIL I n+2 (n+2)(n+1) ①より) 2 2 (n+2)(n+1){(n+1)k-2k] 2 (+2) (+1) (n+1) ・1/2月(月+1) (n+2)(n+1) = = n(n+1)(2n+1) = n(n+1)(2n+1)} 2 P(X=0)=- n+2 |k=n(n+1) n 2n+1 n+1- n+2 nI 3 また,X'の平均は, 2 n+2= (n+2)(n+1) E(X2)=02. -+Σk².- 2(n-k+1) (+2)(n+1){(n+1)宮が一部 2 T(n+2)(n+1) k=1 {(n+1)./ln(n+1)(2n+1)62 -1㎡(n+1)} n_n(n+1) サの場合 (1) =(n+1)2 の 上取り出す 15 となn(n+1)/2n+1 から2 n+2 3 2 6 その よって, Xの分散は, n(n+1) V(X)= n 6 (3)²= n(n+3) 18 (V(X)=E(X2)-{E(X)} さいこ 2でから4個

解決済み 回答数: 1