学年

教科

質問の種類

数学 高校生

至急!解説の方お願い致します🙇🏻‍♀️🙏🏻

〔3〕 下図のような三角形 ABC と, その辺上を移動する 3点P,Q, R がある。 点Pは,点Aから点Bまで毎秒1の速さで移動する。 点Qは点Bから点Cまで 毎秒2の速さで移動する。点Rは,点Cから点Aまで毎秒 27 の速さで移動する。 3点P. Q. R が同時に移動し始める。 (1) 三角形 ABCの面積は ア キ B (2) 移動し始めて1秒後, PQ の長さは コサ クケ 5 A 10 イウである。 エオ カ 三角形 ARP の面積は (3) 移動し始めて3秒後, 三角形 PQR の面積は -. 三角形 BPQ の面積は 数学 (推薦) 医療技術・福岡医療技術学部 シ チツ ソタ ナニ スセ |テト である。 である。 〔4〕 (1) 変量xの標準偏差が4, 変量yの標準偏差が2. 変量xと変量yの共分散が5と するとxとyの相関係数は0. アイウである。 (2) 以下は生徒 10人を対象に行ったテストの得点である。 テストは10点満点である。 生徒 A B C D E F G H I J 得点 3 4 6 9 2 9 9 7 6 1 このデータで採点ミスが見つかった。 生徒Gの正しい得点は, 4点であった。 この修正を行うと, 平均値は修正前から I |オ点減少する。 更に, 生徒Gに加えて, 生徒Eの得点にも誤りがあり、 生徒Eの正しい得点は7点 であった。 生徒Gと生徒Eの得点の修正を行うと, データの分散は生徒Gと生徒E の得点の修正前とくらべて カ 。ただし カ には⑩~②からいずれかを選び なさい。 ⑩ 増加する ① 減少する ② 変わらない 生徒Gと生徒Eの得点を修正した後の生徒達の得点を変量xとする。 更に新し い変量yをy=2(x- キ ク )とする。 変量yの平均値は0. 分散は ケコ |サシとなる。

回答募集中 回答数: 0