学年

教科

質問の種類

数学 高校生

交点の位置ベクトルの問題です。 解説を見ても理解できなくて… s:(1-s)にする理由はなんとなくわかりましたが 黄色マーカーのところ、どうしてこうなるのですか? 公式として覚えなければならないのでしょうか…。

400 基本 例題 26 交点の位置ベク |辺OBを3:4に内分する点をD, 線分AD と BCとの交点をPとし,直線OP △OAB において, OA=d, OB= とする。 辺OA を 3:2に内分する点をC 解答 と辺AB との交点を Q とする。 次のベクトルを a, b を用いて表せ。 (1) OP (2) 0Q [類 早稲田大]] 基本 28 37,66 指針 (1) 線分AD と線分 BC の交点P は AD 上にもBC上にもあると考える。そこで、 AP:PD=s: (1-s), BP:PC=t: (1-t) として, OPを2つのベクトルαを 用いて2通りに表すと, p.362 基本事項 5 から (とちが1次独立)のとき pa+qb=p'a+g'b⇒p=p', q=a' A-7 (2) 直線 OP と線分ABの交点 Q は OP上にもAB上にもあると考える。 CHART 交点の位置ベクトル 2通りに表し係数比較 (1) AP:PD=s: (1-s), BP: PC=t: (1-t) とするとA900 3 OP=(1−s)OA+sOƊ=(1−s)ã+¾³½³sb, 3 OP=tOC+(1−t)OB=¾-¯ta+(1−t)б -=1-t. (+) the de 2 a A £»¯¯¯ (1−s)ã+3¾³½³sb=¾³½³ tā+(1-t)b-A-DA-0 7 3 スー UP よって ++3 3 a = 0, 60, axであるから 1-s= s=1-t 断りは重要 これを解いて これを解いて7 10 S= t= したがって OP= れぞれた 13, 13 a+ 3. 13 13 (2) AQ:QB=u: (1-u) とすると また、点Qは直線 OP 上にあるから, OQ=(1-u)a+ub OQ=kOP (kは実数) とすると, (1) の結果から よって ①~ より、 00-(+)-+6 -> = 13 13 6 13 (1−u)ã+ub= -ka+ D 0 2 13 + a A + 3 kb 13 6 3 -k, u== 13 13 中点でなわ 2 したがって OQ==² ²a+1/15 06=0axであるから 1-u= これを解いて k=- 13³, u = 131 u= 3 断りは重要。

解決済み 回答数: 1
数学 高校生

この漸化式の解法が理解できません(´・ω・`) 2枚目の画像の方法でしかやったことがないので こっちの方法でできるならこの方法でやりたいです。 回答よろしくお願いします🙇🏻‍♀️⸒⸒

基本例 d =1 例 37m+= panta 00000 型の漸化式 an+1= an によって定められる数列{an) の一般項を求めよ。 [類 早稲田大] 基本 34 重要 46 \ 指針 Q+1= an panta ーのように、分子がan の項だけの分数形の漸化式の解法の手順は 漸化式の両辺の逆数をとると 2 1=bm とおくと 1 Gn+1 ·=p+- 9 an bn+1=p+qb bat1=ba+の形に帰着。 計 答 an 464 基本例題 34 と同様にして一般項 b が求められる。 また逆数を考えるために,(n≧1)であることを示しておく。 CHART 漸化式 an+1= am pantg 両辺の逆数をとる 469 An+1= an 4an-1 ①とする。 ①において, an+1=0とすると α = 0 であるから, α=0 となるnがあると仮定すると an-1=an2=......=α=0 ところがα= 1/2(0)であるから,これは矛盾。 4a-05 a-1=0 これから an-2=0 以後これを繰り返す。 漸化式と数列 5 よって、すべての自然数nについて α0である。 ①の両辺の逆数をとると 逆数をとるための十分条 件。 1 4 an+1 an 1 4a-1 A An+1 an 両 両法 法 1 _=bm とおくと bn+1=4-bn an これを変形すると bn+1-2=-(b-2) 計算 1 また b1-2= -2=5-2=3 や ai ゆえに、数列 {bm-2} は初項3, 公比-1の等比数列で n-1 bm-2=3(-1) すなわち bm=3(-1)"'+2 したがって an= 1 1 bn3.(-1)"'+2 特性方程式 α = 4-α から α=2 b= という式の形か 1 an 5 b=0 NC 国分数形の漸化式 α+1= rants (s0) の場合については, p.484, 485 の重要例題 46, pantg 47で扱っている。 37 = 1, an+1= 3an 6an+1 によって定められる数列{a} の一般項を求めよ。 C:-1 buii+1=3(bit1)

解決済み 回答数: 1
数学 高校生

この問題の(1)ではPが時計回りで転がっていると考えていますが、反時計回りで考えても正しいですか?

重要 例題 178 曲線の長さ (2) 動する 円 C:x2+y2=9 の内側を半径1の円Dが滑らずに転がる。 時刻tにおいて、 Dは点 (3cost,3sint) で Cに接している。が (1) 時刻 t=0 において, 点 (3, 0) にあったD上の点Pの時刻 t における座 2 標(x(t),y(t))を求めよ。ただし, Osts πとする。 (2) (1) の範囲で点Pの描く曲線の長さを求めよ。 MC [類 早稲田大] 基本177 CHART & SOLUTION (1) ベクトルを利用。 円Dの中心をQとするとOP=OQ+QP (Oは原点), 更に円Dと 円Cの接点をTとすると, QP と x軸の正の向きとのなす角はt-∠PQTIVA (2) 求める長さは3{x(t)}+{y'(t)} dt 解答 (1) A(3,0),T(3cost, 3sint) とする。 yhiap th YA C 2 DとCがTで接しているとき, Dの中心Qの座標は (2cost, 2sint) である。また, TP=TA=3t より 3 D T(3cost, 3sint) 2. 3t 2t 3 0 A X ∠PQT =3t であるから, QP がx軸の正の向きとな 角はt-3t=-2t OP=OQ+QP 0を原点とすると -=(2 cost, 2 sint)+(cos(−2t), sin(-2t)) =(2cost+cos2t, 2sint-sin2t) (2)x'(t)=-2sint-2sin2t, y'(t)=2cost-2cos 2t から {x'(t)}+{y'(t)}=4(sin't+2sintsin2t+sin22t) 2 +4(cos't-2costcos2t+cos22t) =4(2-2cos3t)=16sin2/23t osts/3であるから sin t≥0 よって, 求める曲線の長さは 16 sin²t dt= 20 3 4sin tdt =4• - COS 3.1 xb (e == 16 3 inf. 半径, 中心角の 弧の長さは20 ■ sin 20+cos20=1 costcos 2t-sintsin2t = cos(t+2t) C1X0 inf.x' (t) =-2sint(1+2cost) <0 (01/22)より、x(t) は積分区間で単調に減少す るから,Pは曲線上の同じ 部分を2度通ることはない。 PRACTICE 1789

解決済み 回答数: 1