数学
高校生
解決済み

この問題の(1)ではPが時計回りで転がっていると考えていますが、反時計回りで考えても正しいですか?

重要 例題 178 曲線の長さ (2) 動する 円 C:x2+y2=9 の内側を半径1の円Dが滑らずに転がる。 時刻tにおいて、 Dは点 (3cost,3sint) で Cに接している。が (1) 時刻 t=0 において, 点 (3, 0) にあったD上の点Pの時刻 t における座 2 標(x(t),y(t))を求めよ。ただし, Osts πとする。 (2) (1) の範囲で点Pの描く曲線の長さを求めよ。 MC [類 早稲田大] 基本177 CHART & SOLUTION (1) ベクトルを利用。 円Dの中心をQとするとOP=OQ+QP (Oは原点), 更に円Dと 円Cの接点をTとすると, QP と x軸の正の向きとのなす角はt-∠PQTIVA (2) 求める長さは3{x(t)}+{y'(t)} dt 解答 (1) A(3,0),T(3cost, 3sint) とする。 yhiap th YA C 2 DとCがTで接しているとき, Dの中心Qの座標は (2cost, 2sint) である。また, TP=TA=3t より 3 D T(3cost, 3sint) 2. 3t 2t 3 0 A X ∠PQT =3t であるから, QP がx軸の正の向きとな 角はt-3t=-2t OP=OQ+QP 0を原点とすると -=(2 cost, 2 sint)+(cos(−2t), sin(-2t)) =(2cost+cos2t, 2sint-sin2t) (2)x'(t)=-2sint-2sin2t, y'(t)=2cost-2cos 2t から {x'(t)}+{y'(t)}=4(sin't+2sintsin2t+sin22t) 2 +4(cos't-2costcos2t+cos22t) =4(2-2cos3t)=16sin2/23t osts/3であるから sin t≥0 よって, 求める曲線の長さは 16 sin²t dt= 20 3 4sin tdt =4• - COS 3.1 xb (e == 16 3 inf. 半径, 中心角の 弧の長さは20 ■ sin 20+cos20=1 costcos 2t-sintsin2t = cos(t+2t) C1X0 inf.x' (t) =-2sint(1+2cost) <0 (01/22)より、x(t) は積分区間で単調に減少す るから,Pは曲線上の同じ 部分を2度通ることはない。 PRACTICE 1789
積分

回答

✨ ベストアンサー ✨

正しくないです

まず、(3cost, 3sint)はtを増やすと反時計回りに動いていきます。円Dが円Cに接しながら反時計回りに動くとき、円上の点は時計回りに回ります。
自転車が前に進む時、必ずタイヤが一方向に回るのと同じですね

ドーナツ

なるほど!とても分かりやすいです!丁寧にありがとうございます!

この回答にコメントする
疑問は解決しましたか?