学年

教科

質問の種類

数学 高校生

青線部の所の意味が分かりません!

(?) (2)) 基本 例 20 極限の条件から数列の係数決定など 00000 ) 数列 {an) (n=1, 2, 3, .....) が lim (3n-1)α=-6を満たすとき. limna である。 918 [類千葉工大] lim(n+an+2-√n-n)=5であるとき、定数αの値を求めよ。 p.34 基本事項 2.基本 18 針 (1) 条件 lim (3n-1)a=-6を活かすために, na-3n-1) α × n 変形 3n-1 77 数列 3n-1 は収束するから、次の極限値の性質が利用できる。 liman=α, limbn=β⇒lima,b=aβ (a,βは定数) 700 818 (2) まず 左辺の極限をαで表す。 その際の方針は p.38 基本例題18 (3) と同様。 41 (1) nan=(3n-1) anx n であり Ana を収束することが 3n-1 lim(3n-1)an=-6, n 1 1 lim =lim わかっている数列ので 表す。 72-00 3n-1 12-00 1 3 3 ? n 数 2 2章 数列の limnan=lim(3n-1)anxlim よって 72100 12-00 1 =(-6). =-2 2) lim(√n2+an+2-√n²-n) n100 (n+an+2)-(n²-n) =lim n11 √n²+an+2+√n²-n =lim 718 (a+1)n+2 √n² +an+ 2 + √√n ² -—n a n (a+1)+ 2 2 n 1+ + + 1- n² n n-co 3n-1 =lim a+1 N18 1 2 n a+1 よって、条件から =5 2 したがって a=9 mil-mila 極限値の性質を利用。 分母分子に √√n²+an+2+√√n²-n を掛け、分子を有理化。 分母分子をnで割る。 n0 であるから n=√n² αの方程式を解く。 次の関係を満たす数列 {az} について, liman と limnan を求めよ。 ア) lim (2n-1)an=1 12-00 81U (イ) lim n→∞ 2an+1 an-3 =2 n→∞ lim(√m²+an+2-√n²+2n+3)=3が成り立つとき, 定数 α の値を求めよ。

回答募集中 回答数: 0
数学 高校生

囲っているところの1-2がわかりません

重要 例題 81 方程式の共通解 2つの2次方程式 2x2+kx+4=0, x'+x+k=0 がただ1つの共通の実数 解をもつように,定数kの値を定め、その共通解を求めよ。〇ASS CHART & SOLUTION 方程式の共通解 共通解をx=αとして方程式に代入 基本刀 a2+α+k=0が成り立つ。これをα, kについての連立方程式とみて解く。 「実数解」という 2つの方程式の共通解を x=α とすると, それぞれの式に x=α を代入した 20²+ka+4=0, 条件にも注意。 解答 共通解をα とすると 2a2+ky+4=0 ****** ①, a2+α+k=0 って ①②×2 から (k-2)α+4-2k=0 重 C ...... ② ← x =α を代入した① ②の連立方程式を解く。 ← α2 の項を消す。 角 すなわち。 (k-2)α-2(k-2)=0 よって (k-2)(a-2)=0 ゆえに k=2 または α=2 m+7 [1] k=2 のとき 2つの方程式は,ともにx2+x+2=0 その判別式をDとすると ③となる。 D=12-4・1・2=-7 D<0 であるから, ③ は実数解をもたない。 よって, k=2 は適さない。 [2] α=2 のとき ②から 22+2+k=0 「であるが! ◆共通の実数解が存在する ための必要条件であるか ら,逆を調べ,十分条件 であることを確かめる。 ←ax2+bx+c=0 の判別 式はD=62-4ac もつ。 *-08 よって このとき2つの方程式は k=-610 2x2-6x+4=0 .... ①', となり, ①' の解はx=1,2 x2+x-6=0 ・②' [1], [2] から INFORMATION よって、確かにただ1つの共通の実数解 x=2をもつ ②' の解はx=20-30S さ ←2(x-1)(x-2)=0, (x-2)(x+3)=0 =-6, 共通解は x=2

未解決 回答数: 0
数学 高校生

解の吟味がよくわかりません

0000 をもつよう 実数解をも 基本 78 基本 例題 80 2次方程式の応用 右の図のように, BC=20cm, AB=AC, ∠A=90° の三角形ABC がある。 辺 AB, AC上に AD=AE となるように2点D, E をとり, D, E から辺BCに 垂線を引き、 その交点をそれぞれF,Gとする。 MOT 長方形 DFGE の面積が20cm² となるとき, 辺 FG の長さを求めよ。 CHART & SOLUTION 方程式) 文章題の解法 D A E B F G 20cm 基本 66 135 等しい関係の式で表しやすいように, 変数を選ぶ ②解が問題の条件に適するかどうかを吟味 FG=x として, 長方形 DFGEの面積をxで表す。 そして、面積の式を=20 とおいた 共 xの2次方程式を解く。最後に,求めたxの値が,xのとりうる値の条件を満たすかどうか 忘れずに確認する。 3章 9 2次方程式 (-5)(-5)=0 J0 から, 解答 を利用する。 FG=x とすると, 0 <FG <BC であるから 0<x<20 ① ← 定義域 また, DFBFCG であるから D E ≥-7 2DF=BC-FG joc & ∠B=∠C=45° であるか ら,△BDF, ACEGも直 B F x G C 角二等辺三角形 20-x m よって DF= 2 長方形 DFGE の面積は DF・FG=- 20-x. ・x 2 $10 S=D. [S] 540 のは, き。 ゆえに 20-x 21 x=20 整理すると 解をも これを解いて x2-20x+40=0 x=-(-10)±√(-10)²-1.4026 102/15 xxの係数が偶数 ここで, 02/158 から 解の吟味。 10-8<10-2/15 <20, 2<10+2/15 <10+8 よって、この解はいずれも ①を満たす。 ①①左目立 したがって 02√15=√60<√64=8 FG=10±2√15 (単位をつけ忘れないよう 新 a PRACTICE 802 BOIT 9 の の [大] 数を求めよ。 連続した3つの自然数のうち, 最小のものの平方が,他の2数の和に等しい。 この3

未解決 回答数: 0