学年

教科

質問の種類

数学 高校生

東工大数学 採点していただきたいです。 途中まで(ノートの左下)で間違えています 50点中何点もらえますか?

24 する。 辺ABを xl-x (0≦x<l) の比に内分する点Pと,辺ACをy: l-y (0≦y<1> の比に内 分する点Qをとり、線分BQ と線分 CP の交点をRとする。 このとき, RがAM に含まれるような (x,y) 全体をxy平面に図示し, その面積を求めよ。 (ただし、道 AB. 辺ACを0:1の比に内分する点とは,ともに点Aのこととする。) 2003年度 (3) △ABCにおいて, 辺ABの中点をM. 辺ACの中点をとする。 ポイント 前半は、平面ベクトルの典型問題である。 平面上のどのようなベクトルも その平面上の2つのベクトルa, a≠0. b=0, ax b) を用いて, Bb (a. B は実数) の形に表されること, そしてその表し方は1通りであることは重要な事実であ る。また、△ABCの間および内部にある点Pは, AP=αAB+ BAC (a+β≦1,420 B20) で表されることもマスターしておくべき基本事項である。 520) 不等式の表す領域の図示と面積を求めるための定積分計算である。 解法 △ABQにおいて, AQ=yAC (0≦y<1) であるか ら,実数s を用いて AR = (1-s) AB+syAC (0≦s≦1) ...... ① と表せる。 また, ACP において, AP=xAB (0≦x<1) であるから実数を用いて AR=AB+(1-1) AC (0≦t≦) ....... ② と表せる。 ABとACは1次独立 (AB AC. MEAN AB≠0. AC ±0) なので ①②より したがって. ①より AR=(1-1-4) AB+1-5 1-xy ここで -xyAC= x (1-y) 1-xy B 1-s=tx, sy=1-1 が成り立つ。 0≦x<1,0≦y<1に注意して, この2式からtを消去すると 1-1 E'S (1-x) -AB + Level B M O P _y(1-x) -AC 1-xy x(1-y) 1-xy とおくと AM= y (1-x) 9= 1-xy AM-AR AN-ACCA& AR=pAB+qAC=2pAM+2qAN となり、点Rが△AMN に含まれるためには xy- 2p+2q≦1④ が成り立つことが必要十分である。 ③を用いると, ④ ⑤ はそれぞれ y(1-x)206 1-xy x+y-2xy=-xy = 1-xy 0≦x<1,0≦y<1より. ⑤'は成り立つ。 また, 0≦x<1,0≦y<1に注意して, ④'を変形す ると よって, 0≦x<1,0≦y<1のもとで, ④’を満たす 点(x,y)をxy平面に図示すると、右図の斜線部 分(境界はすべて含む)になる。 すなわちy=1/1 23 2p20. 2q205062 [注]不等式 (x-2)(x-2/31) 2010/19 リー = x (1-y), -≥0. 1-xy 5- £² (1.-7. 3) 4 S= 9 2 ---- (10)+ §3 平面図形 129 UN + 1/23 を描く。 次に、この境界線で区切られた3つの部分の1つを選 y= の表す領域を図示するには、まず境界線 (x-2)(x-2)=1/ *3 び、その中の1つの点の座標を不等式に代入してみて、成り立てばその点を含む部分に 斜線を施し(同時に境界線をまたいだ隣の隣にも斜線を施す)。 成り立たなければ隣の 部分に斜線を施す。 正領域∫ (x,y) > 0.負領域f (x,y) <0は境界線をまたいで交互に 現れることを利用するのである。 さて 求める面積をSとすると

回答募集中 回答数: 0
数学 高校生

赤線で引いた部分 なぜAのような形を導くことができないんですか?

5 E お う 3 基本例題 点の存在範囲 (2) △OAB に対し, OP = SOA +tOB とする。 実数 s, tが次の条件を満たしながら 点Pの存在範囲を求めよ。 「動くとき, (1) 1≤s+t≤2, s≥0, t≥0 解答 (2) 1≤s≤2, 0≤t≤l 練習 39 基本例題 38 (2) 同様, s+t=kとおいてkを固定し, (1) OP=OQ+▲OR,+▲=1, ≧0,≧0分 QR) の形を導く。次に、kを動かして線分 QRの動きを見る。 (2) ⑩のような形を導くことはできない。そこで、まずを固定させて」を動かし たときの点Pの描く図形を考える。 S t k (1)s+t=k(1≦k≦2)とおくと t OP=(kOA) + (kOB) k + =1, -≧0, k 0 B B' また よって, ROA=OA', kO=OB とすると, kが一定のとき点Pは B AB に平行な線分 A'B'′ 上を動く。kOB ここで,20A = 0, 20B=OD とすると, 1≦k≦2の範囲でんが 変わるとき, 点Pの存在範囲は 台形ACDB の周および内部 (2) sを固定して, OA'=sOAと すると OP=OA' +tOB ここで, tを0≦t≦1の範囲で 変化させると, 点Pは右の図の 線分A'C' 上を動く。 ただし OC = OA' + OB 次に, sを1≦s≦2の範囲で変化させると,線分 A'C' は s=1のとき 図の線分 AC から DE まで平行に動く。 OP=OA+tOB ただしOCOA+ OB, OD = 20A, OE=OD+OB よって、点Pの存在範囲は 点Pは線分 AC 上。 s=2のとき OP=20A+tOB→ 点Pは線分 DE 上。 別解 (2) 0≦s-1≦1から s-1=s' とすると OP=(s' + 1)0A+tOB=(s'OA+tOB)+OA OA+OB=OC, 20A=OD, 20A+OB=OE とすると、平行四辺形ADEC の周および内部 4 →P A kOA k ''A' MO CC'E P tOB \SOA AA' D p.416 基本事項 基本 38 C <s+t=kの両辺をんで割る。 S 11/12=s, 1/10=tとおくと k k s'+t'=1, s'≧0, t'≧0 でOP=s'OA'+f'OB' よって 線分A'B' そこでOQ=s'OA+tOB とおくと, 0≦s'≦1,0≦t≦1から, 点Qは平行四辺形 OACBの周および内部にある。 OP=OQ+OA から,点Pの存在範囲は,平行四辺形 OACBOA だけ平行移動したものである。 線分 A'B' は AB に平行 に, AB から CD まで動 く。 <s, tを同時に変化させる と考えにくい。 一方を固 定して考える (tを先に 固定してもよい)。 (2) -1≤s≤0, 0≤2t≤1 423 △OAB に対し, OP = SOA+tOB とする。 実数 s, tが次の条件を満たしながら動 くとき、点Pの存在範囲を求めよ。 (1) 1≤s+2t≤2, s≥0, t≥0 (3) -1<s+t<2 p.430 EX 27 1 ⑤ ベクトル方程式

回答募集中 回答数: 0