学年

教科

質問の種類

数学 高校生

この問題の解説をしてくださる方いらっしゃいませんか、?🙇‍♂️

このとき, 128 統計的仮説検定 ある市の市長選挙にちの人が立候補した。投票において、白頭や無効票はないもの とする。このとき, どちらかの候補の得票率が50%より多いと, 当選となる この選挙において、投票所における出口調査で、無作為に選んだ 400人のうち, 230 人が A に投票したという結果が出た。やれる このことから, Aが当選確実かどうかを有意水準 5%で仮説検定をする。 まず帰無仮説は「Aの得票率が ア 」であり、対立仮説は「Aの得票率が イ 」で の標本平 ある。 その標 次に,帰無仮説が正しいとすると,大きさ400の標本における比率に対し、標準化した確 変数は, 分布と統計的推測 であり、これ ある。 X=6 「A.B の 0.5である やすいと この 50 れる」 片側 か き po- z= エ Bにど 改) となり,これが標準正規分布に近似的に従う。 今回の出口調査の結果から求めたZの値を20とすると,標準正規分布において確率 P(Z≧zo) の値は0.05よりも オ ので,有意水準5%で, Aは当選確実と カ ア イ の解答群(同じものを繰り返し選んでもよい。) 230 400 である 230 400 ではない 230 400 230 より大きい より小さい 400 ④ 0.5である 0.5ではない 0.5より大きい 0.5 より小さい ウ エ の解答群 (同じものを繰り返し選んでもよい。) 1 1 1 0 400 200 40 20 2 ⑦ 4 20 40 オ |の解答群 ⑩ 大きい ① 小さい カ |の解答群 ⑩いえる ①いえない 14 SI 12 アイウエオカ 520

回答募集中 回答数: 0
数学 高校生

例題75.2 私が書いた波線部は、y以外は◯回微分を( ◯ )というふうに書かないからd/dxのk乗というふうに書いているのですか??

2 基本 例題 75 第n 次導関数を求める (1) nπ (1) y=sin2x のとき,y)=2"sin(2x+ 2 nを自然数とする。 00000 sin(x+ であることを証明せよ。 /p.129 基本事項 重要 76, p.135 参考事項 (2) y=x”の第n 次導関数を求めよ。 指針 yan) は,yの第n次導関数のことである。そして,自然数nについての問題である から, 自然数nの問題 数学的帰納法で証明の方針で進める。 (2)では, n=1,2,3の場合を調べてy() を推測し,数学的帰納法で証明する。 注意 数学的帰納法による証明の要領 (数学B) [1] n=1のとき成り立つことを示す。 n=k+1のときも成り立つことを示す。 =kのとき成り立つと仮定し, [2] nπ (1)y(n)=2"sin2x+ 2 ① とする。 解答 [1] n=1のとき y'=2cos2x=2sin2x+ トル)であるから,①は成り立つ。 kл [2]n=k のとき,①が成り立つと仮定すると y = 2* sin(2x+ n=k+1のときを考えると,②の両辺をxで微分して d 2 kл _y(k)=2k+1cos2x+ ( D dx 2 ゆえに yk2'''sin(2x++1)=2*+sin{2x+(k+1)x} よって;n=k+1のときも ① は成り立つ。 [1], [2] から, すべての自然数nについて ① は成り立つ。 (2) n=1,2,3のとき,順に _y'=x'=1,y"=(x2)"=(2x)'=2・1,y" = (x3)"=3(x2)"=3・2・1 したがって,y(n)=n! ...... ① と推測できる。 [1] n=1のとき y=1! であるから, ① は成り立つ。 [2] n=kのとき, ①が成り立つと仮定すると y(k)=k! すなわち dk dxkx*=k! →(ス n=k+1のときを考えると, y=xk+1 で, (x+1)'=(k+1)xであるから dk k+ dk (d²xx*+1) = d² * ((k+1)x^} dockdx y (k+1)=- =(k+1)- dk dxk /dxkx=(k+1)k!=(k+1)! よって, n=k+1のときも ① は成り立つ。 [1], [2] から, すべての自然数nについて①は成り立ち 次の関数の第n次導関数を求めよ (2) y=^ y(n)=n!

回答募集中 回答数: 0