学年

教科

質問の種類

数学 高校生

(2)△ABCで∠Aおよびその外角の二等分線が直線BCと交わる点をそれぞれD,Eとする およびってなんですか? 答えの図を見る限り内角二等分線と外角二等分線のどちらもしているのは何故ですか? 外角の二等分線しか言われてないのに、、

出版 /www.chart.co.jp/ 328 00000 基本例題 59 三角形の角の二等分線と比 1 AB=3,BC=1,CA=6である△ABCにおいて、<A の外角の二等分 線が直線BC と交わる点をDとする。 線分BD の長さを求めよ。 線分 DEの (2) AB=4,BC=3, CA=2 である△ABCにおいて、<A およびその外 Ip.325 基本事項 2 の二等分線が直線BCと交わる点を,それぞれD, E とする。 長さを求めよ。 CHARTO SOLUTION 三角形の角の二等分線によってできる線分比 (線分比)=(三角形の2辺の比) ・・・・・・ 内角の二等分線による線分比 内分 外角の二等分線による線分比 → 外分 各辺の大小関係を,できるだけ正確に図にかいて考える。 解答 (1) 点Dは辺BC を AB: AC に外分するから BD: DC=AB: AC AB:AC=1:2 であるから BD: DC=1:2 BD=BC=4 よって D (2) 点Dは辺BC を AB : AC に内分するから BD: DC=AB:AC=2:1 1 2+1 ゆえに よって ゆえに DC= また、点Eは辺BC を AB : AC に外分するから BE: EC=AB:AC=2:1 CE=BC=3 -xBC=1 DE=DC+CE=1+3=4 A B B D C JALAB : AC-3:6 WAGHAHA) C PRACTICE ... 59 ② (1) AB=8,BC=3,CA=6である△ABCにおいて, BCと交わる点をDとする。 線分CD E Ha 基本 64 <> ← BD: DC=1:2 から BD: BC=1:1 AB:AC=4:2 基本 △A Eと O AS BAA &&T S=AD 2=38 1=GA_AL 30 STS CHE 解 直線 直編 ① 2 1

回答募集中 回答数: 0
数学 高校生

ここの単元での証明苦手なんですが、ポイントとかってありますか、??🙇‍♀️

AB=8,BC=6,CA=4である△ABCにおいて,∠Aの二等分線と辺 ーマ 38 角の二等分線と比(1) 標 準 する。 このとき, BD, BE の長さを求めよ。 BCとの交点をD, ∠Aの外角の二等分線と辺BCの延長との交点をEと え方 BD: DC=AB: AC, BE: EC=AB: AC となることを利用。 ADは∠Aの二等分線であるから BD: DC=AB: AC=8:4=2:1 2 2+1 -BC= -×6=4 答 よって BD= 3 AEは∠Aの外角の二等分線であるからB BE: EC=AB:AC=2:1 よって, BE: BC=2:1 となるから 12 三角形の辺の比 159 よって 8 6 D 分線と辺BCとの交点をD, ∠Aの外角の二等分線と辺BC の延長との交 練習 112 AB=6,BC=5, CA=4である△ABCにおいて,∠Aの二等 点をEとする。このとき, BD, BE の長さを求めよ。 ...... 4 BE=2BC=2×6=12 答 テーマ 39 角の二等分線と比(2) △ABCの辺BCの中点をMとし, ∠AMB と ∠AMCの二等分線が辺 応用 AB, AC と交わる点をそれぞれD, E とする。 このとき, DE // BCである ことを証明せよ。 考え方 DE // BC を証明するには, AD: DB=AE: EC を示せばよい。 解答 △AMB において, MD は∠AMB の二等分線で MA: MB=AD: DB あるから △AMCにおいて, ME は ∠AMCの二等分線で MA: MC=AE: EC あるから MBMC であるから、①,②より AD: DB=AE: EC DE // BC終 B M E 第2章 図形の性質 113 △ABC の ∠B, ∠Cの二等分線が辺AC, AB と交わる点をそ これぞれE, D とする。 DE // BC のとき, △ABCは二等辺三角形であるこ ETAA++ +

回答募集中 回答数: 0