学年

教科

質問の種類

数学 高校生

(2)と(3)で写真の丸で囲んである箇所のように場合分けする理由をおしえてください。

例 題 51 次の極限値を求めよ. sinx A limxsin X 1 2 lim X イタ 考え方 lim sin x 10 -=1-との違いに注意する. (3) limxsin x → 0 1 x であることに注意する。 lim (2),(3)それぞれ,このままでは直接求めることはできない。 このようなときは, (1)x→∞ではあるが、sin 12に着目すると10 うちの原理 (113) を利用する。そのとき,(2)と(3)で考えるxの他の はさ が異なることに注意する. 180 180 解答 (1)=t とおくと, x→∞のとき,t→0 見 x 1 sint よって, limxsin- =lim -=1 X 「 (2)-1≦sinx≦1より 1 sin x >0のとき ...① A x Xx cos x) 2 考えてよい.ている。 x+∞より,x0 と 辺々を x(>0) で割る。 x11 ここで, lim(-1) = lim1=0 x x xxx よって、①とはさみうちの原理より, lim Sinx -=0 ラジ x-x x 答える。 (3) -1≤sin≤1. x x>0のとき AOのとき (3) ここで, x+0 1 180 Onie S mil- |x≦xin─① x sin xxsin-x x lim(-x)=limx=0 x +0 ② lim.x= lim(x)=0niety x-0 080 したがって, ①,②とはさみうちの原理より, +0) nie 'di 1 limxsin- lim x sin x+0 limxsin=0 よって、 * → 0 in sin s 180 x→0より,x +0 と x→0の場合を考える. 0ssin 1/11とし えてもよい. sin x200 場ができる limf(x)=α x → a =0 x *--0 x 1 nie S x mil- ( = (同じ式) Onia lim f(x) xa+0 として考 = limf(x) = a x-a-0

解決済み 回答数: 1
数学 高校生

(2)で底が一より小さいので不等号の向きが変わるのは分かるのですが、いつどのタイミングで変わるかがよく分かりません。どなたか解説お願いします🙇

202 第5章 指数関数・対数関数 練習問題 16」 次の方程式・不等式を解け . (1)(10g)+210g3x=0 (2) (logir)²-logir²-320 精講 t=logar という変数変換をすることで,2次方程式や2次不等式 に持ち込むことができる問題です.この変数変換では, には真数 条件により x>0 という制約がつきますが,こが x>0 の範囲を動くときに は, t はすべての実数値をとりうるので,tの変域には制約がつきません。 解答 (1) t=10g とおく. 真数条件より x>0 ….. ① (このときはすべての実数をとる.) 与方程式より,f2+2t=0, t(t+2)=0, t=0, -2 t=0 のとき logs=0 log3 = 10g33°⇔ x=1 t=-2 のとき logsx=-210g=log33-2⇔ x= r= -1/1 9 よって、x=1/11 1 (これらは ①を満たす.) (2) t=log} とおく.真数条件より 「x>0 かつ^>0」⇔x>0 …② (このときはすべての実数をとる.) 与不等式より,(10g/r)^-10g/x-3≧0 (logr)²-2logr-3²0 -2t-3≧0, (t+1)(t-3)≧0, t≦-1, 3≦t log}x≦-1,3≦log/ -1 logir ≤log (1), 32 (12) 11083(12) 10g/ log/ ≤ 底1/23は1より小さいので. I (21) (12) 2 ≧x 122, 121 8 ②とあわせて,0<xs/1/2≦x 8 31 O 8 _t=log/x 1 0<a<1のときは 不等号の向きが反転 する 2

解決済み 回答数: 1
数学 高校生

(2)の変域を変えた後がよく分からないのですがどなたか丁寧に解説してくれませんか?

182 第5章 指数関数・対数関数 練習問題 8 (1) 次の方程式・不等式を解け. (i) (2)2-6.2"+8=0 (i) 4-2+1-2³ 20 (2) 次の関数の最大値・最小値を求めよ. 精講 (1Xi) t=2" とおくと t=α* と変数変換すると,これらの問題はtの2次方程式・不等 式または2次関数の問題に帰着させることができます.このとき 変数を変えれば, 変域も変わる というおなじみの標語を思い出してください. には何の変域もついていませ んがt=2" という変数変換をすることで, t には t> 0 という変域がつきま す。 t> 0 ...... ① 与方程式は y=x+1-6.3x+2 (-1≦x≦2) t²-6t+8= 0 (t-2)(t-4)=0 (ii) 52-4.5+¹-125=0 (iv) (+)* - 3/1 9 (2)²-2-2²-820 t²-21-820 (t+2)(t-4)≧0 t≤-2, 4≤t ③より すべてのに 対して 20 t=2,4 (これはともに①を満たす) t=2 のとき 2F=2' より x=1 t=4 のとき 2F=2^2 より x=2 よって、x=12 (m) t=2^ とおくと, t>0 ...... ③ 与不等式は 解答 --6<0 3.2 t24 2²2² 底2は1より大きいので, x≧2 (ii) t=5^² とおくと t>0 ...... ② 与方程式は, [ 5+1 = 5F • 5' (5)2-4-5-5-125=0 t2-20t-125=0 (t+5)(t-25)=0 ②より t=-5.25 AT=22x=(2F) 2 4 tit=21 1 0 t=25 5=52 x=2 負の解は不適となる 2 x == (13) (iv) t= 与不等式は ( ( ² ) ² − ( 3 ) * - 6 - t²-t-6<0 (t+2) (t-3)<0 2<t <3 ④より とおくと,t>0 ...... ④ 底 0<t<3 t>0は常に成り立つので, t<3 について解くと (13) (14) 3-(4) x>-1 は1より小さいので (G)-(G)-(GT) (2) t=3 とおくと をとる. 不等号の向きが反転する -1≦x≦2において y=9.9-6・3・32 =9(3) 2-543 = 9t2-54t 3-1 34 32 変域が 変わる ≤t≤9- t=3² 1 3 この変域において, y=9(t-3)2-81 は t=9 (すなわち x=2) のとき最大値 243 t=3 (すなわち x=1) のとき最小値-81 9 tの変域 11/13 2 の変域 \-(-3) 13 183 - 10 9 X -243 -81 第5章

解決済み 回答数: 3