学年

教科

質問の種類

数学 高校生

最後の青い()のところで、右に書いてある感じで、係数を比較して答えを出すのは減点されますか? x=0とかπ/2とかを代入して計算するやり方でないとだめですか?

基本 例題 156 第2次導関数と等式 (1) y=log(1+cosx) のとき, 等式 y"+2e-1=0 を証明せよ。 |(2) y=ezsinxに 267 00000 に対して,y"=ay+by' となるような定数a,bの値を求めよ。 [(1) 信州大, (2) 駒澤大] 基本 155 指針第2次導関数y” を求めるには,まず導関数y' を求める。 また, 1), (2) の等式はともに 解答 x の恒等式である。 (1) y” を求めて証明したい式の左辺に代入する。 また,er をxで表すには, 等式 elog = pを利用する。 (2) y, y” を求めて与式に代入し、 数値代入法を用いる。 y=2log(1+cosx) であるから (1+cosx). 2sinx y'=2. 1+cosx よって y"=- 1+cost 2{cosx(1+cosx)−sinx(−sinx)} (1+cosxnia 2(1+cosx) (1+cosx) 2 1+cosx ex=1+cosx また, // = log(1+cosx) であるから 2 log M = klogM なお, -1≦cosx≦1と (真数) > 0 から 1+cosx>0 sinx+cos2x=1 [0] elogp=pを利用すると elog(1+cosx)=1+cosx 5章 22 2 高次導関数関数のいろいろな表し方と導関数 ゆえに よって 2e-= 2 2 y 1+cosx e2 y"+2e-=-- 2 + 2=0 1+cosx 1+cosx (2) y=2e*sinx+ecosx=ex(2sinx+cosx) y=2e2(2sinx+cosx)+e(2cosx−sinx) =e2x(3sinx+4cosx) ゆえに ...... ay+by'=aesinx+be2x(2sinx+cosx) =e2x{(a+26)sinx+bcosx} y=ay+by' に ①,②を代入して中 e2x \(e2*)(2sinx+cosx) 1 | +e(2sinx+cosx) (S (3sinx+4cosx)=e2x{(a+26)sinx+bcosx} ... ③ ③はxの恒等式であるから, x=0 を代入して 4=b 参考 (2) y=ay+by' の ように、未知の関数の導関数 を含む等式を微分方程式と いう(詳しくは p.473 参照)。 ③が恒等式⇒③にx=0, また,x=を代入して 3e=e" (a+26) これを解いて a=-5,6=4 このとき 2 を代入しても成り立つ。 (③の右辺)=ex{(-5+2・4)sinx+4cosx}=(③の左辺) 逆の確認。 したがって a=-5, 6=4 係数を比較して、 a+26=3. よって 4:6. a:-5. (1)y=log(x+√x+1)のとき,等式(x+10y+xy=0 を証明せよ。 156 (2)yee yayby=0を満たすとぎ 定数a,bの値を求めよ。 [(1) 首都大東京, (2) 大阪工大] p.275 EX131~133 airy.

解決済み 回答数: 2
数学 高校生

青い()のところを係数を比較して答えを出したのですが、このやり方はだめですか?記述の場合減点などされますか?

基本例題156 第2次導関数と等式 (1) y=log (1+cosx) のとき, 等式 y" +2e-2=0 を証明せよ。自 (2) y=e2sinx に対して, y"=ay + by となるような定数a, bの値を求めよ。 [(1) 信州大, (2) 駒澤大] 基本155 指針 第2次導関数 y” を求めるには,まず導関数yを求める。 また, (1), (2) の等式はともに の恒等式である。 (1)y" を求めて証明したい式の左辺に代入する。 また,e-lをxで表すには、等式 elogp=を利用する。 (2) y', y” を求めて与式に代入し, 数値代入法を用いる (1) y=2log(1+cosx) であるから (1+cos x)' 1+cosx また, ゆえに y'=2. y"=-= ゆえに よって2 2{cos x(1+cos x)-sinx(-sinx)} t0) %5 2(1+cosx) (1+cos x)² 2e-2²²=22 ež y=log(1+cosx) であるから=1+cosx 2sinx 1+cos x 1+cos x (1+cosx) Snie$=$200x630 2 1+cosx R S CHI CV Quasinx+cosx=1(g) =e2x(3sinx+4cosx) 2 1+cos x (②2)=2e²sinx+e2xcosx=e2x(2sinx+cosx) y"=2e²x (2 sinx+cosx)+e²x (2 cosx-sinx) ① これを解いて 2 1+cos x -+ =0+x8}nie!! =e2x{(a+26)sinx+bcosx} y'=ay+by' に ①, ② を代入して料 ① 0 e2x ③はxの恒等式であるから, x=0を代入して I ay+by'=ae²x sinx+be²x (2 sinx+cosx)) =" (²x\\\ (3sinx+4cosx)=e2x{(a+26)sinx+bcosx} ... 4=b log M = klogM なお、-1≦cosx≦1と (真数) > 0 から 1+cosx>0 π また、x=27072 を代入して 3e"=e" (a+26) a+20) lelogp=pを利用すると elog(1+cosx)=1+cosx (e) (2 sinx+cos x) |_ +e2(2sinx+cosx) [ [参考] (2) のy"=ay + by' の ように、未知の関数の導関数 を含む等式を微分方程式と いう(詳しくは p. 473 参照 )。 ③が恒等式 ③にx=0, π を代入しても成り立つ。 右辺==-5,6=4 このとき。 ⑩③の右辺)=e^x {(-5+2・4)sinx+4cosx)=(③の左辺逆の確認。 したがって a=-5, b=4 267 - Jel "ry'=0を証明せよ。 00 5

解決済み 回答数: 1
数学 高校生

この問題のSを求めるところで、 二枚目のように立式してしまいました。 間違えた理由として、このように(上の曲線)−(下の曲線)と立式していいのはそもそもこの二つの曲線の交点が二つないと不可能だった、という認識であってますか?

428 00000 [信州大] 基本 167 25 26 曲線 y=logx が曲線 y=ax2 と接するように正の定数 αの値を定めよ。 また、そ のとき,これらの曲線とx軸で囲まれる図形の面積を求めよ。 O 基本例題 258 接する2曲線と面積 指針▷(前半) 2曲線 y=f(x), y=g(x) が点 (b, g) で接する条件は [f(p)=g(p) y座標が一致 [ƒ'(p)=g'(p) (p.283 基本例題 167 参照。) (後半) (前半)の結果から2曲線の接点の座標がわかるから, グラフをもとに2曲線の上下関係をつかみ, 面積を計算。 値 解答 ②から f(x)=10gx,g(x)=ax² とすると f'(x)=¹, g'(x)=2ax 2曲線y=f(x), y=g(x)がx=cの点で接するための条件は logc=ac² ① かつ =2ac 1 -2/7/² = なお,面積の計算には [1] x 軸方向の定積分 の2通りが考えられるが,ここでは[1] の方針で解答してみよう。 a= 22 ③を①に代入して ゆえに c=√e このとき、 接点の座標は よって, 求める面積Sは 1s=ff" 2/2xdx-S110gxdx (3) -1 1 logc= 2 自健粒 o 2e √e = 1² [ 3² ] ² - [xlog x= x 2e = = √e-(= √²-√²+1) したがって 傾きが等しい (√e, 1/2) ve x1€ C a= 1 2 0 1 2c² 2e S || [2] y 軸方向の定積分 y= 1 ly=logx 2e ve y=f(x) 共通接線 y= y=g(x) ①:f(c)=g(c) ②: f'(c)=g'(c) 接する (後半) の 別解 (指針の [2] による) 2x² (x≥0) =/v/e-1 3 x ⇔ x=√2ey y=logx⇔x=e から S=S(e-√zey)dy = [ex_2√/2 √√y] yv 3 =√e- 5-2√/2012 - 1/2-1 ・1 3 √2 11. &

解決済み 回答数: 1