学年

教科

質問の種類

数学 高校生

(1)(2)のどちらも絶対値を求めてから計算をはじめていますが、これは何を表しているんですか?

515 重要 例題 96 複素数の極形式 (2) 次の複素数を極形式で表せ。ただし、偏角010≦0<2πとする。 -cosa+isina (0 <α <π ) (2) sina+icosa (0≦x<2) 偏角の範囲を考える 0000 ・基本 95 既に極形式で表されているように見えるが,r(cos+isin) の形ではないから極形 指針 式ではない。 式の形に応じて 三角関数の公式を利用し, 極形式の形にする。 (1)実部の符号 - を + にする必要があるから, cos (π-0)=-cosA を利用。更に 虚部の偏角を実部の偏角に合わせるために, sin (π-0)=sin0 を利用する。 (2) 実部の sin を cos に, 虚部の cos を sin にする必要があるから, cos(7-0)=sinė, sin(7-0) 0 =cose を利用する。 2 また,本問では偏角 0 の範囲に指定があり, 002 を満たさなければならないこと 注意。 特に(2)では, αの値によって場合分けが必要となる。 CHART 極形式 (cos+isin) の形 三角関数の公式を利用 (1) 絶対値は (-cosa)+(sina)=1 -cosa+isina=cos(π-a)+isin (π-α) cos(-b)=-coso sin(0)=sin0 3章 1 複素数の極形式と乗法、除法 解答 また ① 0<<より,0<π-α <πであるから,①は求める極 形式である。 偏角の条件を満たすかど うか確認する。 (2) 絶対値は (sina)²+(cosa)² =1 058527 また ここで π sina+icosa=cos| cos(-a)+isin(-a) cos(-9)=sine Ome のときであるから,求め <2mから 2 る極形式は sinaticosa=cos | π a ゆえに, αの値の範囲に よって場合分け。 sin(-)-cos o π <<2のとき,偏 2 (-a)+isin(-a) π 3 <α <2のとき π 2 < -a<0 2 2 各辺に2を加えると、1/11/22であり、 52 -π 5 COS oly なお s(-a)= cos(-a), COS sin(-a)-sin(-a) よって, 求める極形式は sina+icosa cos(-a)+isin(-a) 角が0以上2 未満の範 囲に含まれていないから, 偏角に2m を加えて調整 する。 COS (+2nz)=COS sin(+2nx)=sin [n は整数] 練習 次の複素数を極形式で表せ。 ただし、偏角0 は 002 とする。 396 (1) cosa-isina (0<a<x) (2) sina-icosa (0≤a<2π) PP

未解決 回答数: 0
数学 高校生

数Cの複素数平面の問題です。(1)では場合分けをしなかったのに(2)では場合分けをする理由が分からないので教えて欲しいです。

515 重要 例 96 複素数の極形式 (2) ****** 偏角の範囲を考える ①①①①① 次の複素数を極形式で表せ。 ただし, 偏角0 は 002 とする。 (1) 指針 cosa+isina (0<α<z) (2) sina+icosa (0≦x<2π) 基本 95 既に極形式で表されているように見えるが, (cos+isin●) の形ではないから極形 式ではない。 式の形に応じて 三角関数の公式を利用し, 極形式の形にする。 (1)実部の符号 - を + にする必要があるから, cos (π-0)=-cos0 を利用。 更に 虚部の偏角を実部の偏角に合わせるために, sin (π-0)=sin0 を利用する。 (2)実部の sin を cos に, 虚部の Cos を sin にする必要があるから, COS (一)=sine, sin(10) 0 =cose を利用する。 また、本問では偏角 0 の範囲に指定があり, 002 を満たさなければならないこと に注意。特に(2)では,αの値によって場合分けが必要となる。 3章 138 複素数の極形式と乗法、除法 CHART 極形式 (cos+isin) の形 三角関数の公式を利用 (1) 絶対値は 解答 また cos(b)=-coso sin(π-0)=sin O √(-cosa)+(sina)=1 -cosa+isina=cos(π-a)+isin (π-α) SI...... 1 <<πより,<<πであるから,①は求める極偏角の条件を満たすかど 形式である。 (2)絶対値は また ここで TC √(sina)²+(cosα)²=1 (+1-31 32 sinaticosa=cos(a)+isin(カーム) 0≦a≦のとき,nus であるから、求め る極形式は sinaticosa=cos π <α <2のとき 2 うか確認する。 cos(1-0)=sino sin(-)-cos 0 D 2 10≦x<2πから -as. ゆえに、αの値の範囲に (-a)+isin(-a)+ 180 よって場合分け。 5-2 232 V <<2のとき、偏 TC -a<0 2 π (各辺に2を加えると, --α<2であり 2 cos(-a)-cos(-a). 5 0 2 COS 2 sin(-)-sin(27) 10)805) 2sin(+2nx)=sin◆ 角が0以上 2 未満の範 囲に含まれていないから、 偏角に2を加えて調整 する。 なお cos( +2nx)=cos よって、 求める極形式は sina+icos a=cos(-a)+isin(-a) [n は整数 ] so 次の複素数を極形式で表せ。ただし、偏角0は002とする。求めよ。

解決済み 回答数: 1