学年

教科

質問の種類

数学 高校生

(2)の問題で解説に1.2.3のそれぞれが、部分集合に属するか、属しないかの2通りある。と書かれていますがよくわかりません! あと重複順列についても理解が出来なかったので教えていただきたいです!

288 4/5 重複順列 基礎例題 14 (1) 1,2,3,4,5の5種類の数字を用いて2桁の整数はいくつ作ることが できるか。ただし、同じ数字を繰り返し用いてもよい。 (2) 集合 {1,2,3}の部分集合の個数を求めよ。 CHARL & GUIDE 重複順列n™ の円 異なるn個から重複を許して個取って並べる (1) 2桁の整数を□□として, 「2つの 口の中に, 5個の数字から重複を許し て2個並べる」と考える。 2個目 (2) 1,2,3のそれぞれが, 部分集合に 属するか, 属さないかの2通りある。 SOS 1個目 Lecture 重複順列の考え方 ↑ ↑ n通り × n通り X ...... Xn通り 通り の法則 ■解答 (1) 十の位, 一の位の数の選び方は、 それぞれ 1, 2, 3, 4,5 (1) 十の位 一の位 5通り よって, 求める 2 桁の整数は 5225 (個) (2) 要素 1,2,3のそれぞれについて, 部分集合の要素に なるか, ならないかの2通りがある。 よって, 部分集合の個数は 23=8(個) 注意 重複順列n” の式に直接当てはめようとすると, 例えば (1) は, 52でなく25 のように, n とrの値を間違えてし まうミスが起こりがちである。 慣れないうちは、右の ように、各部分は何通りかを図をかいて考えるとよ い。 5通り 5通り (2) 部分集合の要素になるときを ○, ならないときを×で表すと 1 2 3 × 個目 X -X O {1,2,3} {1,2} {1,3} {1} {2,3} {2} {3}

回答募集中 回答数: 0
数学 高校生

求める果物の買い方を求める式で9はどこから出てきましたか?

題 14 完大] 128 重複組合せ かきなし,もも, びわの4種類の果物が店頭にたくさんある。 6個の果物を買 うとき、何通りの買い方があるか。 ただし, 含まれない果物があってもよいも のとする。 CHART GUIDE 重複を許して作る組合せ ○と仕切りの順列と考える SUS 4種類の果物から、6個を買うというだけで, それぞれの果物の個数に指定がない。 この ような場合は、次のように考える。 買物かごを用意し, その中に3個の仕切り ( で表す) を入れ, 4つの部分に分ける。 その 4つの部分に,順にかき, なし,もも, びわ を計6個入れる。 このとき、果物を○で表すと、例えば もも2|びわ 1 もも0 3 〇〇一〇一〇〇|〇 はかき2|なし1 〇一〇〇|| 〇〇〇 はかき1 | なし2 を表す。このように,果物の買い方は6個の ○ と3個の|の並べ方の総数に対応するから, 同じものを含む順列を利用して求める。 回答 例えば,かきを1個, なしを1個, ももを3個, びわを1個買 うことを6個 と3個の仕切りを用いて 19 それぞれの果物をか で表すと, 2, 2, 1 は COTO | 000 1 0 のように表すとする。 このように考えると, 果物の買い方の総数は, 6個の○と3 個の仕切り | を1列に並べる順列の総数に等しい。 9! =84 (通り) よって 求める果物の買い方の総数は 6!3! thy Lecture 重複組合せ 異なるn個のものから重複を許して個取って作る組合せの総数は,例題の解答と同様に考えて が (n-1) 個 〇が個あるとき,それらを1列に並べる順列 の総数に等しいから、その数は n-1+rC, である。 このような組合せを重複組合せといい、その総数を,H, で表す。 すなわち nH₂=n+r-1Cr (r>n><& £W) 上の例題では、異なる4種類の果物から重複を許して6個の果物を取り出す組合せの総数を考え 4H6=4+6-1C6=9C6=9C3= ているから、その総数は 9・8・7 -=84 (通り) 3・2・1 1, な 〇一〇〇一〇 0, 3, 1, 2 1100010100 で表される。 同じものを含む順列 1

回答募集中 回答数: 0
数学 高校生

(1)のような問題で3-√13の点を取ってグラフを書きたい時どうすればいいですか?

2次関数のグラフとx軸の共有点の座標 次の2次関数のグラフとx軸の共有点の座標を求めよ。 (1) y=x²-6x-4 基例題 本 89 CHART & GUIDE x= @+ (2)_y=-4x²+4x−1 答 (1) y=0 とおくと x2-6x-4=0 これを解いて 2次関数y=ax2+bx+c のグラフとx軸の共有点のx座標は, y=0 とおいた2次方程式 ax²+bx+c=0 の実数解である。 2次方程式 ax+bx+c=0 の解法 ① 因数分解 または ② 解の公式 x= -(-6)±√(-6)-4・1・(−4) 2・1 6±√52 6±2√13 よって 共有点の座標は =3±√13 (3-√13, 0), (3+√13, 0) (2) y=0 とおくと -4x2+4x-1=0 すなわち 4x²-4x+1=0 左辺を因数分解して (2x-1)²=0 ゆえに 2x-1=0 よってx=12/2 共有点の座標は ( 12.0) (1) 3-√13 (2) -b±√b²-4ac 2a y O -4 YA /3+√13 x -1 接点 O 1 2 <<< 基本例題 86,87 の活用 ²-(1-x=- a x ←α=1,b=-6, c=-4 xの係数が偶数であるか ら,6=26′として -b'±√√b²-ac を用いてもよい。 163 両辺に-1を掛けて x 2の係数を正にする。 重解, グラフはx軸に x=-1/22 で接する。 5 Lecture 式が因数分解されている2次関数 2次関数の式がy=(x+1)(x-3) のように因数分解されているとき、y=(x+1)(x-3) y=0 とおいた2次方程式は (x+1)(x-3)=0 となるから, グラフとx V. 3 軸の共有点のx座標はx= -1, 3 とすぐにわかる。 このことを利用すると, 関数のグラフが右のようになることもすぐにわ かる。

未解決 回答数: 1
数学 高校生

公式が理解できません。助けて欲しいです! (N+1)− Nをすれば差が求められる事はわかるのですが、 この場合N−N+1で差を求めていて困っています。 正直赤線の斜線がどうして消し合えているのかもわかりません。。。

分数の数列の和 基礎例題 86 1 1 1 2.4' 4.6' 6.8' 数列 CHARI GUIDE) ■解答 第k項は 1 第k項 1 を部分分数に分解する。 2k (2k +2) ②①を利用して,各項を差の形に直して、求める和 3 和を求める。 201 2n(2n+2) 分数の数列の和 部分分数に分けて途中を消す 20 +......+ ++ ( + / 2k (2k + 2) = + ( + k + 1) ① と表されるから k k+1 の和Sを求めよ。 うまく消し合って和Sが求められる。 s = s -/1/1(1-121)+1/1/1(12/2/1/2)+1/1/11/13-1)-(+税) +・・・...+ + (-1/2-2 + 1) 81-(2+1)- n 求める和Sを書いてみる。 n+1 n = -1 (1-1² + 1) = 1 + ² + 1 = = 12/11(12/1/2)+(1)+(1/1隣り合う2項が詳したり 4 て残るのは // n 4(n+1) 式を導くときに利用している。なお Lecture 分数の数列の和(分解して消える形) 例題のように,第k項がんの分数式で表される数列の和は, 第k項を部分分数に分解して加えるという方法が有効である。 一般に,第k項が α=f(k+1) - f(k) で表されるとき k=1, 2,3, 1 として加えると,右のようにうまく消 し合って和が求められる。 この考え方は, p.475 でΣk²の公 ←部分分数分解については 数学ⅡI 参照。 ← ① に k=1,2,....., を代入して辺々を加 える。 NOD32 n+1 a₁ = F(2)-f(1) a2 = F (3)-F(2) a3=F(4) - 7(3) An-1=F(n)-F(n-1) 71-74

解決済み 回答数: 1
数学 高校生

因数分解なのですが最初の降べきの順に直すところが分かりません。細かく式書いて教えて欲しいです🙇‍♀️

発展例題 250 次の式を因数分解せよ。 (1) a²(b+c)+ b²(c+a)+c²(a+b)+2abc (+12x+1+ (2) a²(b-c)+b²(c-a)+c²(a−b) CHARI & GUIDE N 基礎例題 18, 解答 1) (5)=(b+c) a²+(b²+2bc+c²) a+b²c+bc² =(b+c)a²+(b+c)²a+bc(b+c) ¹) 1) =(b+c){a²+(b+c)a+bc}2) ① a について整理する。 α 以外の文字 6, c は数として扱う。 ② Oa²+□+△の形となる。 公式やたすきがけを利用する。 数が同じ場合 多くの文字を含む式の因数分解 次数が同じ場合 まず、 1つの文字について整理す =(b+c)(a+b)(a+c) =(a+b)(b+c) (c+a) 2) (5)=(b-c)a²-(b²-c²) a+b²c-bc² =(b-c)(a−b)(a-c) 2) =-(a-b)(b-c) (c-a) 発展例題 21 FT_3>85TS 1) b+cが共通因数 (+)=(1+2) 掛けて bc, (x(1+2x)}{x+b+c となる2数 ←輪環の順(p.23)に。 ++税) デストー =(b-c)a²-(b+c)(b-c) a+bc(b-c) 3)+²x)) {x\ 2) 3) + ³x)} (x² - ( =(b-c){a^²-(b+c)a+bc}* 8+50 複雑な 発 bc (1 ( 3) b-c が共通 (+) (4) 掛けてbc., b-cとなる b-c -a-c=-(c- ←輪環の順に。 (8+x) (+3)=(8+1)(1+1)= within Lecture 対称式と交代式 s)(6+) 上の例題の (1) のように, a,b,cのうちのどの2つの文字を入れ替えても、も じになる式を, 3文字の対称式という。 また, (2) のように, a,b,cのうちの 文字を入れ替えても, もとの式と符号だけが変わる式を, 3文字の交代式とい 3文字の対称式、交代式の因数分解については CRE

未解決 回答数: 1