学年

教科

質問の種類

数学 高校生

確率の問題です。 自分はPを使わずに計算しようとしたのですが、私の解答の(ⅲ)(ⅳ)で参考書の答えと違っていました。 自分の式はどこから間違っているか教えてほしいです🙇

例題 190 同じものを含む順列と確率 1 確率の基本性質 383 **** T, 0, H, O, K, U, A, 0, B, A の 10 文字から何文字か取り出し, 横1列に並べるとき, 次の確率を求めよ. (1) 10 文字を横1列に並べるとき,どの2つの0も隣り合わない確率 (2)10文字の中から6文字を1列に並べるとき,どの2つの0も隣り合 わない確率 考え方 確率を考えるときは, 0, 02, 03, A1, A2 として, すべて異なるものとして考える (同様の確からしさ). 解答 (1) T, 01, H, Oz, K, U, A1, 03, B, A2の10個を 1列に並べる並べ方は, 10! 通り どの2つの0も隣り合わない並べ方は,まず0を除 いた7文字を並べ、 さらに7文字の間と両端の8箇所 から3箇所を選んでO1, Oz, 03 を並べるときで, 7!×gP3 (通り) 計算しない. 確率なので, あとで 約分する. 7!×P3. 7!×8・7・6 よって,どの2つの0も隣り合わない確率は, 7 10! 10・9・8×7! 15 (2)10文字の中から6文字を1列に並べる並べ方は, 10P6通り (i) 6 文字のうち0が3つのとき P3×4P3 (通り) (i) 6文字のうち0が2つのとき P4×32×5P2 (通り) (ii) 6文字のうち0が1つのとき 7P5X3C1×6P1 (5) (iv) 6文字のうち0が含まれないとき P6通り よって, (i)~(iv)より, 求める確率は, P3×4P3+ P4×32×5P2+P5×3C1×6P1+P6 ^ ^ ^ ^ ^ ^ ^ ^ 7!X&P3 約分しやすく工夫す る。 0の数によって順列 の総数が異なるため、 場合分けして考える. ☐ ☐ ☐ ^ ^ ^ ^ 7P3×4P3 ^ ^ ^ ^ ^ 7P4X3C2X5P2 ↑ 01 02 03 のうち, どの0を選ぶか. 7 10 10P6 Focus 確率を考えるときは、 同じものも区別する (同様の確からしさ) 第7章

解決済み 回答数: 1
数学 高校生

この問題なんですが Pを x、Y、0遠いて計算して 出すというのでは答えが違うのはなぜなんですか? 字が汚くてすみません。

-118 Think (686) 第11章 空間のベクトル 例題 C1.60 空間における交点の座標(2) **** 2点A(5, 0, 9), B(1, 4, 3) と xy 平面上を動く点Pに対して, AP+PB の最小値と,そのときの点Pの座標を求めよ. 同じ側 ABS ・平面 考え方 2点A, B が xy 平面に関して反対側 にある場合, AP + PB が最小となる のは, 3点AP Bが一直線上にあ る場合である。 同じ側にある場合は, xy 平面に関してBと対称な点B' をと ればよい 反対側 AS P xy 平面 ・B B' 直線の方程式をベクトル方程式で考えて, 媒介変数表示する。 Abs 2点A, B を通る直線のベクトル方程式は OP=OA+tAB である=10 解答 2点A, B は xy 平面に関して同じ側にある. xy 平面に関して点Bと対称な点をNHAT もに正なので, B'(1, 4, -3) とおくと, PB=PB' より, AP + PBが最小となるのは, 3点A,P, B' が一直線上にあるときである. AB' = (-4,4,-12) より, OP=OA + tAB' =(5,0,9)+t(-4,4,12)x =(5-4t, 4t, 9-12t) A,Bの座標がと xy 平面に関して同じ側 にあるとわかる. 直線 AB'′ と xy 平面 15 P B' y の交点が求める点P である. 9 したがって、点Pの座標は, (5-4t, 4t, 9-12t) ・① 013+8 点Pはxy平面上の点より 座標は0だから, 9-12t=0 t=- 3 このとき,P(230) 2-)-A2AO HO (S) 50-RO-1 よって,P(2,30) のとき,AP+PBは最小となり AP+PB=AB、 =√√(-4)'+4°+(-12) =4/11 (3 tを①に代入する. Focus 直線のベクトル方程式 OP = OA+tAB =OA+t(OB-OA) =(1-t)OA+tOB 10-010

解決済み 回答数: 1
数学 高校生

解説をみてもよくわかりません 解説お願いします

-20 基本例 例題 54 平面上の点の移動と反復試行 右の図のように,東西に4本, 南北に5本の道路がある。 地点Aから出発した人が最短の道順を通って地点Bへ 向かう。このとき,途中で地点P を通る確率を求めよ。 ただし,各交差点で, 東に行くか, 北に行くかは等確率と し,一方しか行けないときは確率1でその方向に行くも のとする。 A 基本 52 重要 55 指針 求める確率を A→P→Bの経路の総数 A→Bの経路の総数 から, これは,どの最短の道順も同様に確からしい場合の確率で,本間は道順によって確率 5C2X2C2 7C3 とするのは誤り! 00000 P B 重要 右図の 出たら 別に 「たら れぞ Aは う確 金 が異なる。 例えば, A111→ →→P→→ Bの確率は C D P B 11 1 ・1・1・1・1= 222 A→1→11P 11 Bの確率は 111 11 1 ・1・1= A 2 2 2 22 32 XUS したがって,Pを通る道順を, 通る点で分けて確率を計算する。 右の図のように,地点 C, D, C′', D', P'をとる。 解答 P を通る道順には次の3つの場合があり,これらは互いに 排反である。 D P B C D' P' [1] 道順 A→C→C→P この確率は 1/2x/121x1/2×11=(1/2)=1/1/2 A [2] 道順 A→D→D→P この確率は sc.(1/2)(1/2)x1/2×1=3 (1/2)=1/4 3 16 [3] 道順 AP′'→P [1] ↑↑↑→→と進む。 [2] ○○○と進む。 この確率はC(1/1) (12/12 × =6 6 2 32 よって、求める確率は 1 3 6 + 16 8 16 32 32 ○には,1個と 12個が 入る。 [3] 〇〇〇〇と進む。 ○には、2個と12個が 2 入る。 練習 右の図のような格子状の道がある。スタートの場所か ③ 54 端で表が出たときと,上の端で裏が出たときは動かな いものとす み,裏が出たら上へ1区画進むとする。ただし,右の 表が出たら右へ1区画進 ら出発し,コインを投げて, ゴール A 解答

回答募集中 回答数: 0