学年

教科

質問の種類

数学 高校生

SとTは実数と示す必要はありませんか?

辺 OBを3:4に内分する点を D, 線分 ADと BC との交点をPとし、直線G 練習| A0ABにおいて, 辺OAを2:1に内分する点をL, 辺 OB の中点をM, BLと/ 24|| AMの交点をPとし, 直線 OP と辺 ABの交点をNとする。 OF, ONをOH 指針> (1) 線分ADと線分BCの交点PはAD上にも BC上にもあると考える。そこで, (2) 直線 OP と線分ABの交点QはOP上にも AB上にもあると考える。 OO000 ズーム UF 基本 例題24 交点の位置ベクトル(1) (類早稲田光 「重要 27, 基本38,6.、 ズー (2) OQ 注意 その (1) OP な AP: PD=s:(1-s), BP: PC=t: (1=) として, OPを2つのべ、そ ,5を用いて2通りに表す と, p.384基本事項 5から G+6, 5+0, axō(āとあが1次独立)のとき pa+qb=pa+q6=p=D, q=q' AP 表す につし さて、 が計算 CHART 交点の位置ベクトル 2通りに表し 係数比較 るから 解答 ここで (1) AP:PD=s: (1-s), BP: PC=t:(1-t) とすると - 1-t- OF=(1-s)OA+sOD=(1-s)ā+s5, これは をOA OF-10C+(1-00B-伝+(1-06 よって (1-)i+-5=a+(1-06 , 万ゃ0, axるであるから 1-s=81,5=1-t a このよ A として 補足 上 点 の断りは重要。J これを解いて -= (2) AQ:QB=u:(1-a)とすると 10 13 したがって OF=5 3 a+ 13 13' 13 よっ また,点Qは直線 OP上にあるから, OQ=kOP (k は実数) 0Q=(1-2)a+ub つま とすると,(1)の結果から 注意 解答 06=A+= ;kā+ よって(1-Ditu5-近+高話 ska+ u à+i. 5+0, àxōであるから 1-u=k, u=k なお s: なぜ, 例えば、 これを解いて =u=; 両辺の 13 13 ..の断りは重要。 9,U 1 したがって 0Q=a+g0 また,a= 3 数が等し (2 このよう OB を用いて表せ。 である。 補足 &キ0, 表され (類神戸

回答募集中 回答数: 0
数学 高校生

青チャート数IIBです。 (3)のかいせつがわかりません。もう少しわかりやすく教えていただきたいです。

(3) 直線 PQと直線 RS は交わり, その交点をTとするとき, OT をa, b, cで 四面体 OABC の辺 OA の中点を P, 辺 BC を2:1に内分する点をQ, 辺OCを OO000 2直線の交点の位置ベクトル 478 基本 例題63 |1:3に内分する点をR,辺 ABを1:6に内分する点をSとする。OR。 OB=6, OC=èとするとき (1) PQをà, 5, こで表せ。 O直線 PQと直線RS は交わり,その交点をTとするとき, ōTを, 表せ。 (2) R$ をa, b,cで表せ。 【類岩手大) 基本24 指針> (1), (2) PQ=0Q-OF, R$=OS-OR (差による分割) (3) 平面の場合(p.418 基本例題 24)と同様に, 5 0 00 交点の位置ベクトル 2通りに表し係数比較Jでの に沿って考える。点Tは直線 PQ, RS上にあるから, PT=uPQ (u は実数) RT=R$ (bは実数)として, OTをa, b, c で2通りに表し, 係数を比較する 解答 ュー-+る -a+6-0 1·+2c (1) PQ=00-OFー 2+1 aニー R 64+1·5 1: 3、 P。 (2) R$=OS-OR- さ。 H0×A0=3 D 1+6 4 (3) 直線 PQ と直線 RS の交点を T とする。 Tは直線 PQ上にあるから よって,(1) から A PT=uPQ(uは実数)つ iS B of-OF+uPG--(1-wā+u5+=u 0 2 -uc 3 Tは直線 RS 上にあるから ゆえに,(2) から RT=»R$ (vは実数)つ|1-)- oT-OR+ RS-Si++}(1-の) 6 「7 24点0, A, B,Cは同じ平面上にないから, ①, ②より AHA 2 4 の断りは重要。 1 3° 日2A17,AA0- (17 U= 3 4 第1式と第2式から 7 V=- U= これは第3式を満たす。 15 お期 日 よって, ①から OT=- IPO 6+ 2 15 15 6 1-2

回答募集中 回答数: 0