学年

教科

質問の種類

数学 高校生

FG例題115 黄色マーカ部はなぜ成り立つのですか?

で、3 軌跡と領域 21. 例題 115 領域と最大・最小(2)) ・大 **** 連立不等式 x≧0, y≧0 4≦xty's 最大値、最小値と,そのときのx,yの値を求めよ。 の表す領域において,x+3y の (大阪電気通信大改) 東方 例題 113 (p.216) と同様に、まず与えられた不等式を満たす領域を求める 次に、x+3y=kとおいて考えるとよい。 答 与えられた条件を満たす領域 D は、 右の図の斜線部分で, 境界線 を含む、 yA 境界線は, x+y= 4, B k-3/10 x+y= 9, x+3y=k とおくと、 2 x軸と軸 1 k 13 0 2/ th 3 1 より、傾き k 3' 切片の直線 である。 この直線が領域 D と共有点をもつとき、上の図のように、 (i) 点Aを通るときは最小 (i) 点Bで接するときは最大 となる. (i) 図より A(2.0) である小 この k=x+3y=2+3.0=2 (i)円x²+y2=9 と直線 x+3y=k が接するときの 中心 (0, 0) 直線の距離は、 切片が最小 y切片が最大 k の最小値 円と直線が接する 円の中心と直線の 距離が半径と等し くなる |kk| d= √12+32 √10 kl これが円の半径3と等しくなるから, =3より, √10 1円と直線の式を連 立させて、判別式 D=0 としてもよい。 中||=3√10 つまり, k=±3/10 S したがって,図より、 k=3√10 JA 図より, k0 んの最大値 このとき点は、直線 y=1/2x =-2x+√10 と原点 直線OBの傾き 3. x+√10=3xより、 x= 3√10 18を通りこの直線に垂直な直線 y=3x との交点だから、 OB=3 より 点B の座標は、 10 MA-3. V10 B 9/10 このとき y= 10 y=3• 3 /10 3√10 よって, x+3y の最大値 3√10x= y= 10 10としてもよい、 10 最小値2 (x=2,y=0) x, y が不等式 x+y's5, y≧2x を同時に満たすとき,次の式のとる値の最 大値、最小値と,そのときのxyの値を求めよ。 (1) y-3 (2) 2y-x →p.23034

解決済み 回答数: 1
数学 高校生

青チャート数学Ⅲ77ページの練習45です 重要例題45の⑵と同じ様に 練習45もこのようにやったら間違いですか?

(1) すべての自然数nに対して、1+1が成り立つことを証明せよ。 1 1 k=1 1 (2) 無限級数1+ n + +....+ +...... は発散することを証明せよ。 2 3 ・基本 34, 重要 44 指針 (1) 数学的帰納法によって証明する。 (2) 数列{1} は0に収束するから、p.63 基本例題 34のように,p.61 基本事項 ② を利用する方法は使えない。 そこで, (1) で示した不等式の利用を考える。 n2" とすると k=1 k k=1 1/11/ 4 ここで,m→∞のときn→∞となる。 (1) k ≥1/12+1 ① とする。 無限級数 阻 解答 [1] n=1のとき k=1k 1/2=1+1/2=1/1/3+1 よって, ① は成り立つ。 +1 [2]n=m(m は自然数)のとき,①が成り立つと仮定すると100+ このとき 2 11+1 k=1 k (+1)+2+1 2m+1 k=2m+1 k 1 1 + ++ 2m+2 2m+1 > m2m2 1 1 +1+ + ++ 2m+1 2m+2. 2m+2m_ 1 m+1 +1+ .2m= +1 2m+1 2 よって, n=m+1のときにも ① は成り立つ。 1 12m+1=2m2=2"+2" 1 1 2m+1 2+2+2 (2+) 2m+k (k=1, 2,., 2-1) [1] [2] から, すべての自然数nについて①は成り立つ。 (2)S=2とおく。 n≧2" とすると, (1) から k=1 k m m Sn≥ +1 ここで,m→∞のときn→∞ で lim (7/27 +1)=0 .. limSn=∞ m-oo 8012 したがっては発散する。 an≦bnでliman=∞⇒limbn=∞ (p.343②) 72-00 12-00 n=1n 重45の結果を開いて、無限級数学は発散 0 (2)より、 m を示したい 同様に n Th=8とおく。≧とすると、 k=1 12/2計++言を計計+2より 2m m Th≥ 8 +1 : lin Th=00 " 題意は示された

解決済み 回答数: 1
数学 高校生

Focus gold 例題89 なぜこの解き方が間違っているのかがわかりません

4 第3章 図形と方程式 Think 立 **** 例題 89 弦の長さ(1) 直線 y=2x+2...... ① が円 x + y' =8...... ② によって切り取られて 解答 円 ②の中心 (0,0) と直線①の距離は, |2| |2| 2 できる弦の長さを求めよ. 考え方 図に描いて考える 円の中心と弦の距離を求めて、三平方の定理を利用する y=2x+2 より 2x-y+2=0 =- √2+(-1)^√55 2√2 2√2 求める弦の長さを2ℓ とすると,円の 2√2 2ℓ とおくのがポイ ント 半径が22より X e+(1/5)=(2/2) 36 e2. 5 6√5 I+ l>0より, l=- 5 12/5 よって、弦の長さ2ℓ は, 5 (別解) ①を②に代入して, x2+(2x+2)2=8 (B, 2B+2) 5x2+8x-4=0 .....③ また,円 ②と直線 ①の交点の座 標を(α, 2α+2) (22) とす x ると,α βは2次方程式 ③ (a,2a+2) の2つの解だから,解と係数の関係より、 8=2√√2 ) 2 三平方の定理 求める長さは2ℓで あることを忘れずに 解と係数の関係を利 使用する解法 2.85% ax2+bx+c=0 の 2つの解をα βと 8 +B=- aß= 求める弦の長さを l とすると, l°=(β-a)'+{(2β+2)-(2x+2)}=5(β-α) 2 =5{(x+B-4aB)=5{(-2)-4(-1)}=141 すると b a+β=- aß= a a 三平方の定理 よって, l>0より,弦の長さは, 12/5 5+(1-8) Focus 弦の長さの問題は,円の中心から弦に垂線を引き、 三平方の定理を利用する l²+d²=r² >m> Think

解決済み 回答数: 1