学年

教科

質問の種類

数学 高校生

数2の直線の方程式です。 y=ax+bの式に代入して連立方程式にしても解けると思うんですが、なんでこんな公式があるんですか?!

122 基本 例題 70 直線の方程式 次の2点を通る直線の方程式を求めよ。 (1) (3,-2), (4, 1) (3) (-2, 3), (-2,-5) CHART & SOLUTION 00000 (2) (4, 0), (0, 3) (4) (-3, 2), (1, 2) p.120 基本事項 異なる2点(x1, 1), (X2, yz) を通る直線の方程式 [1] X1 X2 のとき [2] x1=x2 のとき x=x1 [解 Ante 合 (1) y-(-2)=1-(-2) 2(x1) x2-x1 交 4-3 (x-3) / (1) すなわち y+2=3(x-3) よって y=3x-11 3 1 310 (2) y-0-3-0 (x-4) 0 4 x Ea 3 よって y=-2x+3 (3) x座標がともに-2であるから x=-2 (4) y座標がともに2であるから y=2 Stixol YA [int 公式 [1] yy=12-11(x-x) の X2-X1 両辺に X2-x1 を掛けて (y2-y₁)(x-x1) -(x-x1)(y-1)=0 x= x2 とすると (y2-y₁)(x-x1)=0 yyであるから x=x (公式 [2]) (3)3 (4) 2 -2 ! よって, * は公式 [1] [2] -3 0 1 x をまとめたものである。 (p.120 基本事項 1③) -5 POINT a≠0, b=0 のとき, 2点 (α, 0), (0, 6) を通る直線 lの方程式は b-0 y-0= (xa) すなわち + 1/2=1 0-a a b ya このとき, αを直線lのx切片, bを直線lの切片という。 (2) は,これを公式として用いてもよい。 0 a b 全で ための PRACTICE 70° 次の直線の方程式を求めよ。 (1) 点 (35) 通り,傾きが√3 (3)2点 (5,1) (3,2)を通る (5)2点(-3,1) (-3, -3) を通る Ja,0)s(s) (2)2点 (5-3), (-7, 3) を通る (4) 切片が4, y切片が2z (6)2点 (1-2) (-5-2) を通る x

解決済み 回答数: 1
数学 高校生

(2)の問題が解説見てもわからなくて、教えてほしいです🙇‍♀️

(1)正四面体に外接す 2) 正四面体に内接する球の半径をα を用いて表せ。 CHART & SOLUTION (1)基本例題138と同様に,頂点Aから底面△BCDに垂線 AH を下ろす。 外接する球の中心を0とすると, 類 神戸女 ◎基本 ( 重要例 1辺の を, A (1)線 (2) S CHAR AD=C 2次関 (1) D OA=OB=OC=OD(=R) よって、直角三角形OBH に着目して考える。 である。また, 直線AH 上の点Pに対して, PB=PC=PD であるから, 0は直線AH 上にある。 B (2) 内接する球の中心を I とすると, Iから正四面体の各面に 下ろした垂線の長さは等しい。 正四面体をⅠを頂点とする 4つの合同な四面体に分けると, 体積は 四面体 IABC, A 正四面体=4×(四面体 IBCD) IACD, IABD, IBCD これから, 半径を求める。 B (例題 136 で三角形の内接円の半径を求めるとき,三角形を つの三角形に分け、面積を利用したのと同様。) HASE HBAC khe (1) 頂点Aから底面 △BCD に垂線 AH を下ろし、外接する 球の中心を0とすると, 0 は線分AH上にあり ←AH=6 3 -a, BH= OA=OB=R は基本例題 138 (1) の ゆえに OH=AH-OA= √6 03 果を用いた。 a-R A 3 よって △OBHで三平方の定理から 2 BH2+OH2=OB2 (3)²+(√a-R)²=R² すなわち - 2√6 3 -αR=0 ゆえに R=- 3 √6 a= 2√6 4 a B (2) 内接する球の中心をIとする。 4つの四面体 IABC, IACD, IABD, IBCD は合同であるから V=12 V=4×(四面体IBCDの体積)=4 (13△BCD・ 1.13 = 4.1. √3a²• r = √3a²r =4• 123から 3 √2 = 12 √3 a²r よって r=- a 12 PRACTICE も (2) S 解答 AD= (1) (2 V=12 12 138(2)の針用 -αは基本例題 F

解決済み 回答数: 1
数学 高校生

画像の問題でなぜa=0の場合も考えなければならないのですか。 また下の問題ではa=0の場合を考えずに解いていたのですが何の違いですか。

重要 例題 56 1次関数の決定 (2) 101 ののののの 関数y=ax-a+3 (0≦x≦2) の値域が 1≦ysb であるとき、定数a,bの 値を求めよ。 基本 49 CHART & THINKING グラフ利用 端点に注目 1次関数とは書かれていない。 また, 1次の係数の符号がわからないから, グラフが右上 がりか、右下がりかもわからない。 このようなときは,αが正, 0, 負の場合に分けて考えて みよう。 →a>0 のときグラフは右上がり, a<0 のときグラフは右下がり。 a>0, a=0, a<0 の各場合において値域を求め、 それが 1sysb と一致する条件から a. bの連立方程式を作り、 解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか確認することを忘れ ずに。 解答 x=0 のとき y=-a+3, x=2のとき y=a+3 [1] α>0 のとき [1]y この関数はの値が増加するとyの値も増加するから x=2で最大 b, x=0で最小値1をとる。 3 7 関数とグラフ よって これを解いて +3=b, -α+3=1M a=2, b=5 んで これは α>0を満たす。 wwwwwwww [2] α=0 のとき -a+3 70 よん?! この関数は α=0 の場合を忘れない y=3 ように。 このとき, 値域は y=3 であり, 1≦ybに適さない。 定数関数 [3] α <0 のとき [3].y この関数はxの値が増加するとyの値は減少するから, x=0で最大値 b, x=2で最小値1をとる。 ba+3 よって -a+3=b, a+3=1 これを解いて α=-2,6=5 これは α<0 を満たす。 [1]~[3] から (a, b)=(2, 5), (-2, 5) PRACTICE 56 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数を求めよ。 (2) 関数y=ax+b b≦x≦b+1) の値域が-3≦y≦5であるとき、定数a, b の 値を求めよ。 が正って なんでわかるのか

未解決 回答数: 1
数学 高校生

写真の解説の部分を見ていただきたいのですが、どうして下に凸や上に凸のグラフだとわかるのですか。また、なぜ通る点がわかるのか教えてほしいです。解説の言っていることが全体的に分からなくて、、

基本 例題 90 2次不等式の解から係数決定 00000 (1) xについての2次不等式x2+ax+b20 の解が xs-1, 3≦x となる ように, 定数a, bの値を定めよ。 (2)xについての2次不等式 ax²-2x+b>0の解が2<x< 1 となるよ うに、定数α, bの値を定めよ。 CHART & SOLUTION 2次不等式の解から係数決定 2次関数のグラフから読み取る => 答 y=x+ax+b のグラフが xs-1, 3≦xのときだけx軸を含む上側にある。 下に凸の放物線で2点 (1,030) を通る。 y=ax²-2x+b のグラフが-2<x<1のときだけ軸の上側にある。 上に凸の放物線で2点 (2,0), (10) を通る。 (1)条件から, 2次関数 y=x2+ax+b のグラフは,x-1,3≦x のときだ けx軸を含む上側にある。 すなわち、下に凸の放物線で2点 (1,030) を通るから 1-a+b=0, 9+3a+b=0 これを解いて なんで α=-2,b=-3 わかった (2)条件から, 2次関数y=ax²-2x+b のグラフは,-2<x<1のときだけx 軸の上側にある。 すなわち, 上に凸の放物線で2点 2010 を通るから a<0 0=4a+4+b 0=α-2+b ① ① ② を解いて a=-2, b=4 3 基本 87 (1)x13xを 解とする2次不等式の1つ は (x+1)(x-3) 20 左辺を展開して x²-2x-3≧0 の係数は1であるから、 x2+ax+b≧0の係数と比 較して α=-2,b=-3 inf 2つの2次不等式 ax2+bx+c<0 と a'x²+b'x+c<0 の解が 等しいからといって,直ち に a=α', b=b',c=c とするのは誤りである。 + 1 対応する3つの係数のうち、 少なくとも1つが等しいと きに限って、残りの係数は 等しいといえる。 例えば, c=c' であるならば、 |a=a', b=b' といえる。 151 3歳 11 2次不等式 これは α <0 を満たす。 PRACTICE 90® xについての2次不等式 ax²+9x+2b>0 の解が4<x<5 となるように, 定数a, bの値を定めよ。 36m>4

解決済み 回答数: 1
数学 高校生

相加平均相乗平均の問題です 最初になにをしてるんですか?

(7) 件の確認が必要である平均)(相乗平均)を利用。 人にように定数を補い, (相加平均) ≧ (相乗平均)を利用。 CHART & SOLUTION 基本 積が定数である正の数の和の最小値 (相加平均) ≧ (相乗平均)を利用 吉日と白の大小関係 2 から a+bの最小値を求めることができる。 CH 式の 2式 べる を求 基本 例題 31 相加平均・相乗平均を利用する最小値 (1)x>0 のとき, x+-の最小値を求めよ。 9 証明せよ。また、毎号 基本 (2)x>0 のとき, x+ 9 x+2 の最小値を求めよ。 0< p.42 基本事項 5. a+bz√ab において, ab=k(一定)の関係が成り立 → 解答 (1)x>0, 20であるから,相加平均と相乗平均の大小関 ↓ 相加率) 9 係により 9 相加平均と相乗 大小関係を利用する この x+2 X・ =2.3=6 XC x 解答 等号が成り立つのはx=- 9 明 すなわち x=3のとき。 9 x ← x=- よって、x=3で最小値6をとる。 を明示する。 =から=9 x x>0 であるからょ a+ 0<d よっ 20 (2)x+ 9 x+2 =x+2+ 9 x+2 また -2 x>0より x+2>0, 9 x+2 ->0 であるから, 相加平均と相 2つの項の積が足 なるように,x+20 を作る。 した であ [1] 乗平均の大小関係により [2] x+2+ ≧2. x+2 =2.3=6 x+2 x+2 ゆえに9x+29_2 x+2 -2≧6-2=4式の値が4になるよ M 値が存在する [3] 等号が成り立つのは x+2= 9 のとき。 x+2 このとき (x+2)2=9 とを必ず確認する。 立号成立は 9 した x+2>0 であるから x+2=3 (2) x>1 のとき, x+ 1 の最小値を求めよ。 x-1 したがって, x=1で最小値4をとる。のときされ PRACTICE 31実の方 3 b,c,dは正の数と (1) x>0 のとき, x+ 16 次の不等式が成り立つことを証明せよめ の最小値を求めよ。 北平米日(日) ORA 2- 5-0 ゆえに x+2= x+2 96 x=1 かつ x+2+- x+2 2(x+2)=6 として求めてもよい

未解決 回答数: 0
数学 高校生

この赤枠のところの、両辺に16をかけるのは何故ですか? 教えて欲しいです!

[大阪産大〕 基本 113 CHART & SOLUTION 三角比の計算 かくれた条件 sin20+cos'0=1 を利用 かくれた条件 sin'0+cos20=1 tan の値は sino, cose の値がわかると求められる。 そこで を利用して, sino, cose についての連立方程式 4cos0+2sin0=√2, sin20+cos20=1 を解く。 → cose を消去し, sin0の2次方程式を導く。 解答 4cos0+2sin0=√2 を変形して 4cos0=√2-2sin sin20+cos20=1の両辺に 16 を掛けて 16sin20+16cos20=16 ①を②に代入して 16sin20+(√2-2sin0)²=16 10sin20-2√2 sin0-7=0 4cos0 +2sin=√2 4章 (2) を条件式とみて、条件式 は文字を減らす方針で COS を消去する。 13 三角比の拡張 整理して さ ここで, sin0=t とおくと 10t2-2√2t-7=0 これを解いて t=- √2 ± 6√2 ( (*) 10 よって t=-1 √2 7√2 2' 10 0° <0 <180°であるから 0<t≤1 これを満たすのは 7/2 t= 10 すなわち sin0= 7√2 10 ①から 4 cos 0=√2-2-- 7/2 2√2 10 5 ゆえに cos 0=√2 10 sine 7/2 √2 したがって tan 0=- =-7 Cos 10 10 (*) 2次方程式 ax2+26'x+c=0 の解は x=- - b' ±√b^2-ac a int sin 0, cos0 どちらを 消去? sin を消去して coseに ついて解くと, 0°<0 <180° から cos = √2 √2 2' の2 10 つが得られるが, √2 cos 0=- のときは 2 sin0 <0となり適さない。 この検討を見逃すこともあ るので, cose を消去して, 符号が一定 (sin0 > 0) の sin を残す方が, 解の吟味 の手間が省ける。 PRACTICE 1160 0°≦0≦180°の 0 に対し,関係式 cose-sino=1/23 が成り立つとき,tanøの値を求 めよ。

解決済み 回答数: 1