学年

教科

質問の種類

数学 高校生

この赤線部分が分からないです💦どこから(m+√D)/2などが出てきたのでしょうか?

OO000 372 Sの最 基本236 小値を求めよ。 1 6 このとき,公式(x-a)(x-β)dx=-(B-a)°が利用できる。 更に,Sをmの関数で表し, mの2次関数の最小値の問題に帰着させる。 解答 ソ4 y=x? 点(1, 2) を通る傾き mの直線の方程式は と表される。 ソ=m(x-1)+2 直線のと放物線 y=x° の共有点のx座標は, 方程式 x=m(x-1)+2 すなわち xーmx+m-2=0 の実数解である。この2次方程式の判別式をDとすると D=(-m)°-4(m-2)=m"-4m+8=(m-2)°+4 常にD>0であるから, 直線① と放物線y=x? は常に異なる 2点で交わる。 その2つの交点のx座標を α, B(<B)とすると ソ=m(x-1)+2 |S a 0 B 聞ケ酵 点(1, 2)を通りx軸に垂直 な直線と放物線y=x°で囲 まれる図形はない。よって, x軸に垂直な直線は考えなく てよい。 CB S=(m(x-1)+2-x}dx=-(x?-mx+m-2)dx Ja =-Sx-a)(x-B)dx=8-d) また m+VD m-/D =D=(m-2)°+4 B-a= (a, Bは2次方程式 x-mx+m-2=0 の解で 2 2 したがって,正の数β-aは, m=2のとき最小で, このとき (8-a°も最小であり, Sの最小値は(V4))= m±\m'-4m+8 4 Xミ 2 3 m?-4m+8=D 検討)B-aに解と係数の関係を利用 さを S=-(B-a)°において, (B-a)°の計算は 解と係数の関係を使ってもよい。 x-mx+m-2=0の2つの解を α, Bとすると よって (8-a)=(α+B°-4aB=m'-4(m-2)=(m-2)°+4 α+B=m, aB=m-2 S= 0-0-18-の(m-2)+4z- ゆえに 6 -{(m-2)°+4)2.4=1 6

回答募集中 回答数: 0
数学 高校生

この問題の(2)なんですけど、なぜ判別式D>0は必要ないのですか? 例えば、「異符号の解を持つような定数Pを求めよ」だったらαβ<0でもう判別式は0より大きい事は示せてると言うのは分かります。(b²-4acのcが負のため)このようなしっかりした理屈はあるのでしょうか?

「基本例題50 2次方程式の解の存在範囲 OOOO0 2次方程式 x-2px+p+2=0 が次の条件を満たす解をもつように,定数pの値 の範囲を定めよ。 (1) 2つの解がともに1より大きい。 (2) 1つの解は3より大きく,他の解は3より小さい。 p.81 基本事項2 指針>2次方程式x*-2px+p+2=0の2つの解を α, Bとする。 (1) 2つの解がともに1より大きい。→α-1>0 かつ β-1>0 (2) 1つの解は3より大きく, 他の解は3より小さい。→α-3とB-3 が異符号 以上のように考えると, 例題 49 と同じようにして解くことができる。なお, グラフを利用 する解法(p.81 の解説)もある。これについては,解答副文の別解参照。 2章 |解答 2次方程式x-2px+p+2=0 の2つの解を α, Bとし, 判別式 をDとする。 2-(-かー(p+2)=がーカー2=(カ+1)(ー2) 別解 2次関数 f(x)=x°-2px+p+2の グラフを利用する。 D 解と係数の関係から 1) 21.8>1であるための条件は 一つaβがラじ可軸について x=p>1, Dり かつ (α-1)+(8-1)>0 かつ (α-1)(8-1)>d" D20から α+B=2p, aB=p+2 f(1)=3-p>0 っから 2<か<3 (p+1)(p-2)20 *ーp y=f(x) pS-1, 2Sp (α-1)+(8-1)>0 すなわち α+B-2>0 から 2カー2>0 よって の 3- ap よって p>1 0 1 『B (α-1)(B-1)>0すなわち aB-(α+B)+1>0 から p+2-2か+1>0 よって かく3 3 (2) f(3)=11-5p<0から 求めるかの値の範囲は, ①, ②, 3の共通範囲をとって -1 123 p p> 2Sp<3 2) α<Bとすると, α<3<Bであるための条件は (α-3)(B-3)<0 4題意から,α=βはありえ ない。 すなわち aB-3(α+B)+9<0 ゆえに p+2-3-2か+9<0 11 か> 5 よって 2次方程式x-2(a-4)x+2a=0が次の条件を満たす解をもつように,定数aの 50 値の範囲を定めよ。 (1) 2つの解がともに2より大きい。 (2) 2つの解がともに2より小さい。 (3) 1つの解が4より大きく, 他の解は4より小さい。 練習 (p.85 EX34 9 解と係数の関係、解の存在範囲

回答募集中 回答数: 0