学年

教科

質問の種類

数学 高校生

183.1 10÷0.4771=20.95....となり、私は9を四捨五入して21.0...としたのですがこれでも大丈夫でしょうか??

286 SE 06 06 oras 0=8 基本例題183 常用対数と不等式180000 log103=0.4771 とする。 (1) 3" が 10桁の数となる最小の自然数nの値を求めよ。 00.0 orgol類 福岡エア 基本 18 (2) 3 進法で表すと100 桁の自然数Nを, 10進法で表すと何桁の数になるか、 指針 (1) まず, 3" が 10桁の数であるということを不等式で表す。 (2) (2) 進数Nの桁数の問題 不等式ん桁数-1≦N <h桁数の形に表す helbu ・・・・・・・・・改訂版チャート式基礎からの数学A 基本例題142 10年 3100-1≤N<3100 に従って、問題の条件を不等式で表すと 解答 (1) 3” が10桁の数であるとき 各辺の常用対数をとると ゆえに 10進法で表したときの桁数を求めるには, 不等式 ① から, 10″-1≦N <10" の形を たい。そこで,不等式 ① の各辺の常用対数をとる。 練習 183 9≦ 0.4771n<10 9 0.4771 10°≦3" < 1010 内 9≤n log103<10 よって ≤n<. したがって 18.8......<n<20.9...... この不等式を満たす最小の自然数nは n=19 Gorg (2) Nは3進法で表すと100桁の自然数であるか 3100-1N < 3100 すなわち 399 ≦N < 3100 各辺の常用対数をとると 1.005018 to 9910g 10 3 log10 N <10010g103 99×0.4771 ≦10g10N <100×0.4771 10 0.4771 ゆえに すなわち 47.2329 ≤log10 N<47.71mol)08 (8-8) 3 よって 1047.2329 ≦N < 1047.71 100.4771=3 ゆえに 1047 <N<1048 したがって,Nを10進法で表すと, 48 桁の数となる。 別解 10g103=0.4771 から ゆえに, 3% ≦N <3 100 から よって 1047.2329 ≦N < 1047.71 ゆえに (100.4771) 99 ≤N<(100.4771) 100 1047 <N < 1048 したがって, N を 10進法で表すと, 48 桁の数となる。 Nがn桁の整数 Saigof-Oこの不等式を満たす自 =(n=19, 20 であるが、 「最小の」という条件があ るので, n=19が解。 10'<10" LIO8OXE) gol (Ful 0108.0008 p=loga M⇒a=\l Dode= 10g102=0.3010, log103 = 0.4771 とする。 (1) 小数で表すとき, 小数第3位に初めて0でない数字が現れるように 自然数nは何個あるか。 (2) 10gs 2 の値を求めよ。 ただし, 小数第3位を四捨五入せよ。 また、この結果 利用して, 4'°を9進法で表すと何 基礎 AH 比べ 初め log 指針 Col 解 現在の とする 両辺の 40 ここて よって ゆえに したか 練習 ③ 184

回答募集中 回答数: 0
数学 高校生

これの答えを教えてください! 解答がなくて答え合わせができず、困ってます😭

196-197 ません) らない) つくるこ をすべき とつくる 続けら -199 だ) た) ―には の意 Knot 0 B30 XOT XEXERCISES ES 不定詞① (名詞用法) ⑤ [ ]内の意味に合うように、不定詞を使って英文を完成させなさい。 (1) Ann wants to know a teacher. [教師になる方法] (2) I know (3) Sam didn't know (4) I haven't decided that book. [どこで買えばいいか] [何を言えばいいのか lood to of DoverIO for Canada yet. [いつ出発すべきか] HOUSTI RISTONSSON 0 ⑥6 日本語に合うように( (1) 大切なのは、だれにもうそをつかないことだ。 The important thing (to /is/lie / not) to anyone. )内の語句を並べかえ, 全文を書きなさい。 16 SORTIR D aslood to fol a basi PASA d'evil of a to guidool a'ade z (2) 彼女があなたに怒っているのは当然だ。 It is (for / natural / you / angry with / be / to / her). om gloro base on avail I as 宝不さ玉会 3 om eqlar barst on (3) 妹が夜ふかしするのはめずらしいと思う。 (2) I think (unusual/my sister / stay / to / it's / for) upl late. 100 Lat of yu tead sillal terW HIS GJELDED MIROS PROSVITU TOGE (4) 私の長所は,決して落ちこみすぎないことだ。1000 ( My good point (be / to / depressed / is / too / never) of a bit uovo woH C (1) CONST 8 7 与えられた状況に合うように ( )内の語句を並べかえ, 全文を書きなさい。 ただし, 不要な語 句が1つずつ含まれています。 CD (1) 状況 医師から食生活を改めるよう言われたので、私は…。 I (not/ eating / eat / decided / a lot of /to/ sweets). 07-11-not eating/cated 13/2014 bro bothate 7 of advice. BORARSTO ENNUJAS LEBET CAS (2) 状況 ルーシーは最近悩みがあり、だれかに相談したいのですが・・・。 he of htpal chu Lucy doesn't (ask/know/who / for /to/ bawala a no ixats qode of CUS LOT- (3) 状況 最近, 地震が多いことを受け, ホームルームで先生がひと言。 We had better (what / case/ do / consider / to / of / in / doing) emergency. JON TOTO + ton en 08) a 16 red blor. I 8 [ ]内の語を参考にして~…に自由に語句を入れ, オリジナルの英文をつくりなさい。 れ、オリジナ 28-1-571-7 CD (1) 私が~することは簡単だ。 [easy / to ] (2)~(人)は私に….する方法を教えてくれた。[teach] 51

回答募集中 回答数: 0
数学 高校生

⑹で図形の対象性より外接球と内接球の中心が一致すると書いてありますが、 図形の対象性とはどういうことですか?

262 第4章 図形と計量 Think 例題 137 Sing= 正四面体の種々の量 ∠OMA=0 とする.また,頂点Oから平面ABCに下ろした垂線の足を 1辺の長さがα の正四面体OABC で, 辺BCの中点をMとして、 Hとする. 次の値を求めよ. (1) cose (3) △ABCの面積S (5) 正四面体の内接球の半径r [考え方] OH OM 0 1002000010 B A 正四面体の内接球の半径 001 内接球の中心をIとすると, OI, AI, BI, CI で, 四面体を4つ ania. の三角錐に分割したとき,それぞれの角錐の高さが内接球の半 径になる. CODE FOT つまり、内接球の半径は, 三角形の面積を分割して内接円の半 径を求めたアイデアと同様に、分割してみる. 正四面体の外接球の半径 外接球とは 4点 0, A,B,Cを通る球で, 対称性を考えれば, 内接球の中心と外接球の中心は一致する . 外接球の半径は OIになることを利用する. 解答 ∠OMA を含む △OAM に着目すると, on Jend A √√3 OM=AM=- 2 3507-03 また, 対称性より, 点Hは△ABC の重心である。 cos A= a 0 (2) sin0=√1-cos20 3 △OMH において OH = OMsin O √3 2 正四面体は左の図のように回転させても同じような立 体の状況になる. このように図形や立体が対称性をもつ場合,その性質 B を利用して考えるとよい。 (1) 点Hは線分 AM を 2:1に内分 する. ここで,(2) OHの長さを A H 求めるから, 辺 OH を含む △OMH B において, >(2) OH の長さ (4) 正四面体の体積V (6) 正四面体の外接球の半径R -ax THOSEBEN HM _1 OM AM == 3 2√2 3 2√2-√6 3 =- a 0-0000-001 802+024x 8\084-04-2A 0 0 H 1 /3 2 €OC LOCA +06) M AM M **** C -a=AM A B a 160° 20 B M 重心については p.426 参照 sin'0+cos'0=1 を |利用 A BET

回答募集中 回答数: 0
数学 高校生

237の(3)について質問です。 なぜ、AP=AQが二分のaだと、PQも二分のaと分かるのでしょうか? あと、PD=√3Apになる理由も教えてほしいです。 分かる人いたら教えて欲しいです。 お願いします。

辺BC上に点Pをとり,点Aから点Pを通って, 点Gまで直線で結ぶ。 このとき、次の問いに答えよ。 (1) AP+PG の最小値を求めよ。 (2) (1) のとき, ∠APGの大きさを求めよ。 (3) (1) のとき, APGの面積Sを求めよ。 236 右の図のような, 1辺の長さが1の立方体ABCD- EFGHの対角線 EC に頂点Aから垂線 AK を引く。 <EAK, KAB をそれぞれα, β とするとき, cosa, COS βを求めよ。 Hint 234 内接する球の半径をrとして正四面体の体積をで表す。 235 展開図で考える。 きる。 Hは ABCD の重心であるから MH-DM-3-√3 = 2 E 6 -MH²-(43)-(4) - 3 2 AH"=AM²-MH²= 237 1辺の長さがαの正方形を底面とする四角錐 O-ABCD がある。 OA=OB=OC=OD=αのとき (1) この四角錐の高さをαで表せ。 よって AH= F 3 3 実戦編 B A (2) 点Pを辺AD上に点Qを辺AB上にAP=BQ = x となるようにとる。 三角錐 P-AQD の体積を最大にする x を a で表せ。 (3)0=∠QPD とおく。 x が (2)で求めた値のとき, COSA の値とQPDの面積 を求めよ。 香川大) 236 ∠CAE=∠AKE =90° であることに注意。 237 (2) から底面に下ろした垂線をOH, P から底面に下ろした垂線を PH' とす △OAH △PAH' である。 E P F C G 235~237 の解 AE=BC ∠EAC=∠CBE (=∠R) AC=BE より △AEC≡△BCE AK, BLは辺ECを底辺としたときの AK=BL これより AEK (直角三角形の合同条件、斜辺と他 EK=CL ゆえに CL=EK =√AE²-AK²= よってK, LはCE の三等分

回答募集中 回答数: 0