学年

教科

質問の種類

数学 高校生

194の問題がどうしてもわからないので解説お願いします💦どっちかだけでも大丈夫です!!

例題切り取る線分の長さ 47 直線 x+y-1=0 ①が円 x2+y2=4 ②によって切り取られ ある線分の長さと, 線分の中点の座標を求めよ。 解答 右の図のように、切り取られる線分を AB, 線分 の中点をMとする。 円②の半径は2であるから, △OAB は OA=OB=2 の二等辺三角形であり ∠OMA=90° OM は,円②の中心 (0, 0) 直線 ①の距離で A 12 (2) 2 M -2 O * 2x 2. B |-1| 1 あるから OM= = √12+12 2 よって AM=√OA2-OM2= = 22. /7/14 = = -2 したがって, 求める線分の長さは AB=2AM=√14 答 また、線分の中点M は, 円 ②の中心 (0, 0) から直線 ①に引いた垂線と, 直線 ①との交点である。 この垂線の方程式は y=x ...... ③ ①③を解くとx=1/2x=/12/2 1 よって, 線分の中点の座標は 谷 2 2 [参考] 線分の中点のx座標は,次のようにして求めることもできる。 ①,②からyを消去して 2x²-2x-3=0 第3章 図形と方程式 この方程式の解をα, β とすると,解と係数の関係により α+β=1 α+B_1 線分の両端のx座標はα, βであるから, 線分の中点のx座標は 2 B 194 直線 y=2x+5 が、 次の円によって切り取られる線分の長さを求めよ。 また、その線分の中点の座標を求めよ。 例題 47 *(1)x2+y2=16 (2)(x-3)+(v-1)=25

回答募集中 回答数: 0