学年

教科

質問の種類

数学 高校生

至急お願いしたいです🙇🏻‍♀️三角関数のグラフの問題なんですけど、何故解答のところの、ようにワイ軸の交点がルート3になるのですか?

基本例題 141 三角関数のグラフ (2) 関数 y=2cos/ 0 π (一合) のグラフをかけ。また、その周期を求めよ。 2 6 一 基本のグラフy=cos0 との関係 (拡大・縮小, 平行移動) を調べてかく。 指針 v=2cos (17)より、y=2cos/12(-4)であるから、基本形y=cos0をもとにし てグラフをかく要領は、次の通り。 ① y=costを軸方向に2倍に拡大 ②① を 0 軸方向に2倍に拡大 (1/2倍は誤り)y=2cosm2② Hare π を軸方向に だけ平行移動 2 π 0 y-2.com (12) 20001/12(15) = cos 6 ③3 0 注意 y=2cos (12/17)のグラフがy=2cos 1/2のグラフを軸方向にこだけ平行 移動したものと考えるのは誤りである。 CHART 三角関数のグラフ 基本形を拡大・縮小,平行移動 √√3 |1|2| π -1 解答 JOHA & SARIONFO $0ocslid よって,グラフは図の黒い実線部分。 周期は 2÷12=4 y=cos2 -2 3y=2cos // (0-5) 4 3 327 テー ||3 OT π 2 π y=cose π 2π 15 IN/O! ---- 2 元 10 3 27 (14) AA B →y=2cose ② y=2cosa π 3π y=2cos2/12 (01/28 ) .... ③ (0-7) I I 7 47 π 2 00000 13 LR π 基本140 平 9 ・① い (-2, 0). (. 2). (x, 0), (1, -2). Ⓒy-2cos (1, 0), (13³1, 2) の解放、うる商品 2 P 0の係数でくくる。 五軸との交点や最大・ の周期と同 最小となる点の座標を チェック 229 4章 2 三角関数の性質、グラフ

解決済み 回答数: 1
数学 高校生

この青で囲んだ部分のやつまじでどこから来たのかわかりません。どなたか教えてください

を 223 方 ワイ 増場 [2] a<1≤a+1 001のとき よって はx=1で最大となり M(a)=f(1)=4 次に2<α<3のとき, f(x)=f(a+1)とすると a³6a²+9a-a³ すなわ 2<a<3と5<√33/6に注意して 1.3.0.4+1 4+2² 1713! [3] 1≦a < のとき f(x)はx=αで最大となり 3a²-9a+4=0 _ −(−9) ± √ (−9)²—4•3•4 2.3 a= 9+√33 6 M(a)=f(a)=a³-6a²+9a 近いもの lid 以上から まちがた 9+√33 [4] ≦αのとき 6 f(x)はx=a+1 で最大となり M(a)=f(a+1)=α-3a²+4 u+1使える! [2]y 4 Q= [3]y [4] y 9+√33 a<0, 6 0≦a <1のとき M (α)=4 4F a+α+1)=3から 2 最大 9+√33 1≦a < 6 [3],[4] a≧3≦atlになる 9 土 O 1 3 a+1 9+√33 6 3次関数のグラフの対称性に関する注意 p.344 の参考事項で述べたように, 3次関数のグ ラフは点対称な図形であるが, 線対称な図形で はない。 すなわち, 3次関数がx=pで極値をと るとき 3次関数のグラフは直線x=pに関して 対称ではないことに注意しよう。 上の解答のαの値を 133 6 最大1 2 3 '3 a a+1 a+1 I x ●最大 La+1 a+1 x のとき M (a)=a²-6a²+9a 指針の② [区間内に極大 となるxの値を含み, そ のxの値で最大] の場合 。 ≦a のとき M (a)=a²-3a²+4 指針の⑧ [区間で単調減 少で, 左端で最大] また は ⑩ [区間内に極小とな るxの値がある] のうち 区間の左端で最大の場合。 9+√33 ex= 指針の① [区間内に極小 となるxの値がある] の うち、 区間の右端で最大 の場合、 または指針のA [区間で単調増加で,右 [端で最大] の場合。 3次関数の グラフ f(+1) 設定しろ! 対称ではない 放物線 PICZ (線) 対称 i=212としてはダメ! ] なお、 放物線は軸に関して対称である。 このことと混同しないようにしておこう。 357 dfl 最小値m(t) を求め 6章 3 最大値・最小値、方程式・不等式 ぐの E 委

回答募集中 回答数: 0