学年

教科

質問の種類

数学 高校生

写真の質問に答えてください。

516 18 約数と倍数,最大公約数と最小公倍数 CATE 基本事項 1 約数 倍数 き,bはaの 約数 であるといい, αは6の倍数であるという。 ② 倍数の判定法 2の倍数 5の倍数 3の倍数 ③ 素数と素因数分解 2つの整数α, bについて, ある整数kを用いて, a=bk と表されると 一の位が偶数 ( 0 2, 4, 6, 8 のいずれか) 一の位が05 のいずれか 4の倍数 9の倍数 各位の数の和が3の倍数 下2桁が4の倍数 各位の数の和が9の倍数 ① 2 以上の自然数のうち, 1とそれ自身以外に正の約数をもたない数を素数とい い,素数でない数を合成数という。 1は素数でも合成数でもない。 ② 整数がいくつかの整数の積で表されるとき,積を作る1つ1つの整数を,もとの 整数の 因数 という。素数である因数を素因数といい, 自然数を素数だけの積の 形に表すことを素因数分解 するという。 4 約数の個数, 総和 自然数 N を素因数分解した結果がN=pager…………. であるとき, Nの正の約数の個数は (a+1)(b+1)(c+1)...... ←基本例題 8 参照。 総和は (1+p+...+pª)(1+q+···+q°)(1+r+...+rº) ...... 解説 ■ 約数, 倍数 a=bk のときa=(-6) (-k) であるから, bがαの約数ならばーも αの約数である。 また, すべての整数は0の約数であり, 0 はすべて の整数の倍数である。 なお, 0 がある整数の約数となることはない。 ■倍数の判定法 [4の倍数の判定] 正の整数Nの下2桁をaとすると, 負でないある整 数kを用いて, N=100k+α=4・25k+α と表される。 よって、Nが4の倍数であるのは, αが4の倍数のときである。 [3の倍数 9の倍数の判定] 例えば, 3桁の正の整数Nを N = 100α+106+cとすると, N=(99+1)a+(9+1)6+c=9(11a+b)+(a+b+c) であるから, a+b+cが3の倍数であればNは3の倍数であり, a+b+cが9の倍 数であればNは9の倍数である。 4桁以上の場合についても同様。 ■素因数分解の一意性 合成数は, 1 とそれ自身以外の正の約数を用いて, いくつかの自然数 の積で表すことができる。 それらの自然数の中に合成数があれば,そ の合成数はまたいくつかの自然数の積に表すことができる。 このような操作を続けていくと,もとの合成数は, 素数だけの積にな る。 よって, 合成数は、 必ず素因数分解でき 注意 以後,約数や倍 整数の範囲 ( 0 や 数は, 負の数も含む) で考え る。 <0は0=60 と表さ れるから 60 の 約数であり, 06 の倍数である。 4の倍数の判定法は、 「下2桁が4の倍数 または 00」と示され ることもある。 本書 では, 00の表す数は 0 であるとみなして 4の倍数の中に含め ている。 例えば,210=6・35 と表すことができる が6=2・3.35=5・7 から 2102・3・5・7 to 110 約数と倍数 00000 aとbがともに3の倍数ならば, 7a4bも3の倍数であることを証明せよ。 は0でない整数とする。 P.516 基本事項 がともに整数であるようなαをすべて求めよ。 40 aが6の倍数で,かつbがαの倍数であるとき, αを6で表せ。 ■ 「αがもの倍数である」ことは, 「bがαの約数である」 ことと同じであり,このとき,整数kを用いて a=bk と表される。このことを利用して解いていく。 (2) αは5の倍数で,かつ40の約数でもある。 bが3の倍数であるから, 整数k, lを用いて a=3k, b=3l と表される。 a=bk Laは6の倍数 7a-46=7・3k-4・31=3(7k-4L) よって 7k-4lは整数であるから, 7a-46は3の倍数である。 (②2) 1/3が整数であるから,αは5の倍数である。 ゆえに,kを整数としてα=5kと表される。 よって 40 40 8 a 5k k 40 が整数となるのは, kが8の約数のときであるから a k=±1, ±2, ±4, ±8 したがって a=±5, ±10, ±20, ±40 と表される。 (3) αが6の倍数, bがαの倍数であるから 整数 k lを 用いて a=bk, b=al a=bk を b=al に代入し, 変形すると 60 であるから kl=1 k, lは整数であるから k=l=±1 したがって a =±b bαの数 b(kl-1)=0 整数の和差積は整数 である。 a=5k を代入。 517 負の約数も考える。 α=5kにの値を代入。 を消去する。 <k.lはともに1の約数で 110 (ア) a,bがともに4の倍数ならば、' +62は8の倍数である。 の倍数で 断ならば、cdはabの約数である。 (1) 次のことを証明せよ。 ただし, a,b,c,d は整数とする。 4 章 倍数の表し方に注意! だったら a=tbl= 数であるから, のように別の文字 (k, lなど) を用いて表さなければなっない 上の解答ので, lを用いずに, 例えば (1) で α=3k, b=2のように書いてはダメ! これではα=6となり, この場合しか証明したことにな なるのですか? 1989 約数と倍数、最大公約数と最小公倍数 と書く f 2432115) 214-191

解決済み 回答数: 1
数学 高校生

106.2 記述これでも大丈夫ですか??

472 基本 例題 106 約数の個数と総和 31/ 00000 (1) 360 の正の約数の個数と、 正の約数のうち偶数であるものの総和を求めよ。 (2) 12" の正の約数の個数が28個となるような自然数n を求めよ。 [(2) 慶応大] (3) 56の倍数で, 正の約数の個数が15個である自然数nを求めよ。 指針▷ 約数の個数, 総和に関する問題では,次のことを利用するとよい。 自然数Nの素因数分解が N = pagere…..... となるとき 正の約数の個数は (a+1)(b+1)(c+1)...... EO (1+p+p²+…+pª)(1+g+q²+…+q¹)(1+r+r²+…+r²)....... 【CHART 約数の個数, 総和 素因数分解した式を利用 (1) 上のNが2を素因数にもつとき, Nの正の約数のうち偶数であるものは 2.gº.y....... (a≧1,6≧0,c≧0, … ; g, , ... は奇数の素数) 1+ の部分がない。 と表され, その総和は (2+22+..+2°) (1+g+q²+ +q°)(1+r+y^+..+rc)... を利用し, nの方程式を作る。 (2) (3) 正の約数の個数15を積で表し, 指数となる a, b, の値を決めるとよい。 15 を積で表すと, 15・1, 53 であるから, nは15-11-1 または'-'g3-1の形。 p.468 基本事項 ④4 ←P, 4, Y, ··· は素数。 解答 (1) 360=232.5であるから, 正の約数の個数は (3+1)(2+1)(1+1)=4・3・2=24 (個) また,正の約数のうち偶数であるものの総和は pg're の正の約数の個数は (a+1) (6+1)(c+1) (p,g,r は素数) の形で表される。 nは56の倍数であり, 56=23・7であるから, nはP2 の形 で表される。したがって, 求める自然数nは n=24.72=784 < 素数のうち, 偶数は2の みである。 (2+2+2)(1+3+3)(1+5)=14・13・6=1092 (2) 12"=(2・3)" = 22" 3" であるから 12" の正の約数が28個 (ab)"=a"b", (a")"=a" であるための条件は (2n+1)(n+1)=28 よって 2n²+3n-27=0 ゆえに (n-3) (2n+9)=0 nは自然数であるから n=3 (3)の正の約数の個数は 15 (=15.1=5・3) であるから, nは または pq2 (p, g は異なる素数) 積の法則を利用しても求め られる (p.309 参照)。 m のところを 2nn とし たら誤り。 15・1から 15-101-1 5・3 から 3-1 の場合は起こらない。 <p=2, q=7

回答募集中 回答数: 0
数学 高校生

答えに線を引いたところが分かりません!なぜcはc+1と表さないのですか?解説お願いします🙇🏻‍♀️書き込みは気にしないでください🙇‍♀️

第4問 (選択問題)(配点20) (1) 432を素因数分解すると [ア 4322 ' × 3 である。 また, 432の正の約数は全部でウエ個ある。 この例について、花子さんと太郎さんは,次のように話している。 花子: 自然数の正の約数の個数は素因数分解すれば求めることができるね。 太郎 : では,正の約数の個数が与えられたら自然数って決まるのかな。 花子:一つには決まらないよ。 例えば, 6の正の約数の個数も、8の正の約数 の個数も同じ4個だよ。 太郎: 432 に自然数を掛けた数だとどうかな。 花子: 考えてみよう。 太郎さんと花子さんは, 次の問題をつくって考えることにした。 30 問題 Nを2桁の自然数とする。 432N の正の約数の個数が 50個となるよ うな N を求めよ。 25 (4+1)(3+1) 10 5 (2008 5 2 (数学Ⅰ・数学A 第4問は次ページに続く。) 25.40 220 4/50 D 47 2 21432 2/216 432は4322 2 N=2×3×n ただし,a,bは0以上の整数,nは2,3と互いに素である自然数とおいて考える。 n=1のとき, a, bの組は (a,b)=( 1108 254 (27) 9 8. N² と求められ,N=キクである。 n=1のとき, N は全部でケ個あり、最大のNはN=コサーである。 (数学Ⅰ・数学A 第4問は次ページに続く。) 3 造通とい 25-2 3 S 222 200. オ と素因数分解できるから カ N2-36 28.3 a b Ba 9.5240 9.4 (BAH) (RH) ₂ 50 02+200492. ta-)|h= Descarr X 2.3 2²3 X altate- aetate 28.29 2².29 2.3° 28-83

解決済み 回答数: 1