学年

教科

質問の種類

数学 高校生

29.3 このような証明方法でも問題ないですよね??

基本例題 29 絶対値と不等式の不 82 00000 次の不等式を証明せよ。 明などの基本の (1)|a+b|≦|a|+|6|| (2) |a|-|6|≧|a+b) (3) la+b+cl≦lal+10+| 指針▷(1) 例題 28 と同様に,(差の式) ≧0は示しにくい。 重要 de+pas\\&+D\² $328 30 解答 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0の A≧B⇔A'≧B'A'-B'≧0の の方針で進める。また、絶対値の性質(次ページの①~⑦) を利用して証明してもよい。』 (23)と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 *****RO CHART 似た問題 11 結果を利用 ② 方法をまねる (1)(|a|+|6|)²-la+b=a²+2|a||6|+b²-(a²+2a6+62) ◄|A|²=A² <|ab|=|a||6| 2 =2(|ab|-ab)≧0 よって la+b≧(|a|+|6|) 2 |a+b≧0,|a|+|6|≧0から la+6|≦|a|+|6| 別解] 一般に,一|a|≦a≦|a|,-|6|≦6≦|6| が成り立つ。 H この不等式の辺々を加えて (a+16)≦a+b≦|a|+|6| したがって |a+6|≦|a|+|6| de (2)(1) の不等式での代わりにa+b, bの代わりに―6と おくと |(a+b)+(−b)| ≤|a+b|+|-b| de+pas ゆえに |a|-|6|≦la+6| よって |a|≧|a+6|+|6| 別解 [1] |a|-|b|<0 のとき よって a+b≧0であるから,|a|-|6|<|a+6|は成り立つ。 [2] |a|-|6|≧0のとき |a+b1²-(|a|-|6|)²=a²+2ab+b²-(²-2|a||6|+62) =2(ab+lab)≧0 よって (|a|-|6|)2≦|a+b2 |a|-|6|≧0,|a+b≧0であるから [1], [2] から lal-1b|≤|a+bl (3) (1) の不等式での代わりにb+c とおくと la+(b+c)|≦la|+|b+cl a+b+cl≦|a|+|6|+|c| 05 608- -B≦A≦B +S) ≤ ( ⇔[A]≦B ズームUP参照 DOCU (ay lal+1b/+/c/ a66650s |a|-|6|≦la+6| この確認を忘れずに。 |A|≧A, AI≧-A から -|A|≦a≦|A| P |a|-|6|<0≦|a+6 [2] の場合は, (2) の左辺, 右辺は0以上であるから, (右辺) (左辺)20を示 す方針が使える。 +04 105 (0+ 14-08- 133c¹2 (1) の結果を利用。 (1) の結果をもう1回利用。 (|b+cl≦|6|+|c|) 1+RB+++

回答募集中 回答数: 0
数学 高校生

青チャート 数2 不等式の証明 例題29(3) 黄色マーカー部の箇所で、なぜ|b+c|が|b|+|c|になったのか分かりません。 (1)の結果をもう一度利用と書いてありますが、そもそもそこが理解できません。なので(2)も場合分けで考えました。 (1)を利用するの意味を教え... 続きを読む

MAKE 52 XX 基本例題 29 絶対値と不等式 次の不等式を証明せよ。 (1)a+b≧a|+|6| (2)|a|-|6|≦la+b] (3)|a+b+cl≦|a|+|6|+| 基本28 重要 30 指針 > (1) 例題 28 |A= A を利用すると、 絶対値の処理が容易になる。 そこで ......... ABA'≧B'⇔A'-B'≧0 A≧0, B≧0のとき の方針で進める。また、絶対値の性質 (次ページの①〜⑦) を利用して証明してもよ (2),(3) 似た形である。 そこで, (1) の結果を利用することを考えるとよい。 CHART 似た問題 1 結果を利用 ②2 方法をまねる 解答 (1) (a+b)²-|a+b|²=a²+2|a||b|+b²-(a²+2ab+b²) =2(abl-ab)≧0 |a+b≤(a+b1)² よって la+b≧0,|a|+|6|≧0から |a+6|≦|a|+|6| 別解] 一般に,|a|≦a≦|a|-|66|6| が成り立つ。 この不等式の辺々を加えて -(|a|+|6|)≦a+b≦|a|+|6| したがって la+6|≦|a|+|6| (2) (1) の不等式でαの代わりに a +6, 6 の代わりに -6 と おくと (a+b)+(-6)≦la+6+1-6| よって |a|≦a+6|+|6| [別解] [1] |a|-|6| <0のとき ア ゆえに |a|-|6|≦la+61 a+b≧0であるから, |a|-|6|< la +6は成り立つ。 [2] |a|-|6|≧0のとき よって |a+6-(|a|-|6|²=a²+2ab+b²-(α²-2|a||6|+62) =2(ab+lab)≧0 よって (la|-|b|)² ≤|a+b|² |a|-|6|≧0,|a+b≧0であるから [1], [2] から la|-|b|≤|a+b| (3) (1) の不等式でもの代わりにb+c とおくと la+b+c)|≦|a|+|b+cl la+b+cl≦|a|+|6|+|c| ≦|a|+|6|+|c| |a|-|6|≦|a+6| 8800000 4 at ◄|A|²=A² |ab|=|a||6| この確認を忘れずに。 |A|≧A, A≧-A か |-|A|≦a≦|A| -B≦A≦B ⇔ [A]≦B <ズーム UP 参照。 <|a|-|6|<0≦la+6 [2] の場合は, (2) 左 右辺は0以上であるから (右辺) (左辺)≧0を示 す方針が使える。 練習 (1) 不等式√²+2+1√x²+y²+1≧lax+by+1」を証明せよ。 ③29 (2) 不等式|a+b|≦|a|+|6|を利用して,次の不等式を証明せよ。 (ア) |a-6≦|a|+|6| (イ) |a|-|6|≧|a-6102 (1) の結果を利用。 (1) の結果をもう1回利用 (|b+cl≦|6|+|c) Cp.60 EX19 ズーム UP その内 絶対値 数学Ⅰで いて € なわち, 絶対値を 例題 29 に (証明で が多く煩 そこで, ~ (1) 指針 ない。 例題28 (2) 左辺 lal-le いが, 証明 とみ ここ (3) は, (1) 参考 (1). 例題 29 (1) 等号 すなわ (2) 等号7 の代わ (3) 等号7 おいた a(b+c) また, よって,

回答募集中 回答数: 0
数学 高校生

丸で囲った式をどうやって出すかがわかりません。 あと例題と練習で似たような問題なんですが練習の方が最後の方に向きの説明を入れなければならないのはなぜですか?練習の方は平面上のベクトルと書いてあるからだと思ったんですがなぜ平面上だと向きの話が必要で例題の何も書いてない普通のベ... 続きを読む

3 |C1.14 d-8-81-457 x+√3/9 平面上のベクトル, 方 が |20+6=1, |a-36|=1 を満たすとき, a +6 | の最大値, ga 1 最小値を求めよ. 8800 (1) 2a+b=u.......①, a-36=1... ② とおくと, ||=1, |v|=1 ① ② より, a, を で表すと, ICT.11 a=³u+v 7 a+b = よって, 10+12=1 =4-20 7 4u-v 7 2 4u ・ひ 7 49 (16×1²-8u v+1²) [ 49 =1 (17-84-7)..... 49 √(16|u|²—8û•v+|v|²) 0=²1+5= ここで、より したがって, ③より, 9 49 lã+620 *D. /slá+b== 0 0812020 ++①×3+② より, TW=10+58/ 0-1 (0+5) 7b=u_2v ≤lá +61²≤ 250 -1≤u v≤1 18 きとは逆向きで ||=||=1 であるから, すなわち, ①② より, 2a+b=(a-36) 最小値 2 7a=3u+v ①②×2 より, -=0|2|=1, |v=1 a +6= 2 となるのは、=-1 のときであり、このと 2020 ed ab=alb|cose 80-8-1≤cos0≤1 £4, €1.50 -Tallosa·b≤|a||b| A-3A1=158) (1) cos0=1 より, 8=0° | +6= 2 となるのは、 v=1のときであり,このときのとき, ひとこは同じ向きで ||=|=1 であるから, すなわち, ① ② より, 2a+b=a-3 i=b したがって, a=-4b このとき, 2a+6=|-76=1 より, 0A +30 ROU 条件を満たす a, が存在す ることを確認したが,省略し てもよい。 〇京 (⑧) このとは川のとき、 u=v cos0=-1 より 0=180° HA OA 08 したがって, d=23236 a= co2³, 12a+b=26=10, 16A-Am-+-HA9)S よって, la +6| の最大値 1408OA0 のとき HA-OAS-ON TOA $18A1-A OAS ALEBA OSHEANS 2xy+2x+2xs と同様に展開する。

回答募集中 回答数: 0