学年

教科

質問の種類

数学 高校生

この問題のActionのところに書いてある、無理関数を含む不定形の極限は、分子または分母を有理化せよというのがなぜなのかが分かりません。どのようなメリットがあるのでしょうか?回答よろしくお願いします。

例題 52 極限と保数決 次の等式が成り立つように、定数a, bの値を定めよ。立た lim{√x2-2-(ax+b)}=0 8+xp+5 x→∞ 8-4 候補を絞り込む (2) a > 0 のとき a = 0 のとき →b ∞∞の不定形 与えられた等式を は-6台)] 満たすのは, この場合のみ。 8-1 ∞+∞∞ 思考プロセス la < 0 のとき α > 0 で考える。 Action» 無理関数を含む不定形の極限は,分子または分母を有理化せよ 解 a≧0 のとき,与えられた極限は∞に発散するからa>0 lim√x2 -2 = ∞, √x2-2-(ax + b) 0 = (x) m {√x²-2-(ax+b)}{√x-2+(ax+b)} √x2-2+(ax+b) -0-0-(1-a²)x2-2abx-(2+b²) == √x2 -2 +(ax+b) x→∞ a < 0 のとき mi lim{-(ax + b)}=∞ x→∞ a = 0 のとき lim{-(ax + b)} = -6 x→∞ TA よって, a≧0 のとき (与式)。 2+62 + (1-α2)x-2ab x 010 2 b 1- +a+ 2 x" x よってx→∞ のとき,これが収束する条件は 1-α2 = 0 a>0より α = 1 であり,このときの極限値は (+x+im{√x²-2-(ax+b)} lim{vx2-2-(ax+b)}=∞ 分子を有理化する。 x→∞より,x > 0 と考 えて、分母分子を x で 割る。 (S) SIS 8 分母のみの極限値は lim 2 2+62 81X x2 +a+ - 26 x x ・26 =1+α lim -b 80+x 2 b 2 1 +1+ 2 であるが, a>0より 0 にならない。 x x ゆえに したがって b=0 a=1,6=0

解決済み 回答数: 1
数学 高校生

数Ⅱ 軌跡を求める問題です。 写真の解説一行目で、基本例題98ではいつも使っている文字としてP(x,y)としたのですが、PR98でPの座標をP(x,y)としたら間違っていて、x,y以外の文字にする、と書かれていました。 2つの問題の違い、なぜPR98の問題でP(x,y)と置... 続きを読む

基本 例題 98 曲線上の動点に連動する点の軌跡 DACTICE (木) 98 thehet 1 00000 点Qが円x+y=9 上を動くとき, 点A(1,2) とQを結ぶ線分AQ を 2:1 に内分する点Pの軌跡を求めよ。 CHART & SOLUTION 連動して動く点の軌跡 p.158 基本事項 1 つなぎの文字を消去して、 x yだけの関係式を導く ...... 動点Qの座標を (s, t), それにともなって動く点Pの座標を (x, y) とする。 Qの条件を s, を用いた式で表し, P, Qの関係から, s, tをそれぞれx, yで表す。 これをQの条件式に 代入して,s, tを消去する。 解答 Q(s, t), P(x,y) とする。 x+y=9上の点であるから Pは線分AQ を 2:1 に内分する点であるから s2+t2=9 13 ① (s, t) 2- A 1・2+2t 2+2t Q (1,2) 3 -, y= 2+1 3 -3 0 1・1+2s 1+2s x= 2+1 よって s=3x21.t=3v22 2 ●これを①に代入すると (321)+(3x-2)=9 ゆえに (12/21)+(1/2)=9 よって(x-1)+(y-22-4 =4 ...... ② したがって, 点Pは円 ②上にある。 逆に円 ②上の任意の点は,条件を満たす。 以上から、 求める軌跡は 中心 2) 3'3' 半径20円 P(x,y) つなぎの文字 s, tを消 去。 これによりPの条 件(x, yの方程式)が得 られる。 inf. 上の図から,点Qが 円 x2+y^2=9上のどの位 置にあっても線分AQ は 存在する。 よって, 解答で 求めた軌跡に除外点は存在 しない POINT 曲線 f(x, y) = 0 上の動点 (s,t) に連動する点(x, y) の軌跡 ① 点 (s, t) は曲線 f(x, y) = 0 上の点であるから f(s, t)=0 ② s, tをそれぞれx, y で表す。 ③ f(s, t)=0に②を代入して, s, tを消去する。 RACTICE 982 放物線y=x2 ① とA(1,2), B(-1, -2), C(4, -1) がある。 点Pが放物線 ①上を動くとき、次の点Q, R の軌跡を求めよ。 (1) 線分APを2:1 に内分する点Q (2) △PBCの重心R

解決済み 回答数: 1