学年

教科

質問の種類

数学 高校生

解答では、それぞれの長さを変数でおいてから、相似比で1変数に直していますが、別解として、θを設定して1変数関数として求めることは出来ますか?できれば答えまで示して欲しいです

ENGRENS. 4K 89 重要 例題 104 最大・最小の応用問題 (2) 題材は空間の図形 ①①①① 半径1の球に,側面と底面で外接する直円錐を考える。この直円錐の体積が最 基本 103 小となるとき, 底面の半径と高さの比を求めよ。 指針立体の問題は,断面で考える。→ここでは,直円錐の頂点と底面の円の中心を通る平 面で切った 断面図 をかく。 問題解決の手順は前ページ同様 ① 変数と変域を決める。 2 量(ここでは体積) を で決めた 変数で表す。 3 体積が最小となる場合を調べる (導関数を利用)。 であるが,この問題では体積を直ちに1つの文字で表すことは難しい。 そこで,わか らないものはとにかく文字を使って表し, 条件から文字を減らしていく方針で進める。 50-0 直円錐の高さをx, 底面の半径を r, 解答 体積をVとすると, x2 であり A TATR)S (高さ)> (球の半径) x2 から。 7= ...... ① x 3 D 球の中心を0として,直円錐をその 頂点と底面の円の中心を通る平面で 切ったとき,切り口の三角形ABC, および球と △ABC との接点 D, E を 右の図のように定める。 (Onie-nia +(1+8203)8 200/ △ABE∽△AOD (*) であるから AE: AD=BE:OD B --E C (*) △ABE と △AODで ∠AEB= ∠ADO=90° ∠BAE = ∠OAD (共通) 26 すなわち x:√(x-1)2-12=r:1 (1+0 2000 2001 0200S) (1+0 200) 対応する辺の比は等しい。 AD は, 三平方の定理 を利用して求める。 x よって r= 2) √x²-2x ②①に代入して V=π 2 x π x •x= 3 dV π2x (x-2) -x2・1 x-2 πx(x-4) • 3(x-2)2 よって dx = 17 3 (x-2)2 dv = 0 とすると, x>2であるから x=4 dx x>2のときVの増減表は右のようになり、 体積 V はx=4のとき最小となる。 このとき, ②から r=√2 ゆえに, 求める底面の半径と高さの比は r:x=√2:4 Vをx (1変数) の式に 直す。 () u'v-uv v.2 x 2 4 dv 4 20 dx V 極小 +

解決済み 回答数: 1
数学 高校生

どなたか答え合わせお願いします🙇‍♀️🙏💦

Ⅰ. 次の太字の英単語に最も近い意味を持つものを,a~d. の中から1つ選びなさい。 解答 は解答用紙1枚目 (マークシート方式) の所定の解答欄にマークしなさい。 (1) opportunity a. charge b. choice chance d. check (3) criterion a standard b. criticism c. agreement d. sequence (5) compensation a. money given or received as payment for a loss b. mathematical statement showing equal parts c. event where people celebrate d. advantage given to only certain people (7) registration a act of recording information b. idea that leads to further discussion c. strong like or appreciation for another d. one part of a larger component (9) distribute a. derive from an original source b. make available to see c. hand out or deliver something d. be different from others (2) reject a. make illegal refuse to accept c. express support d. give an order (4) application formal request a 6. changed behavior official record d. expression of ideas (6) intervention a. event which results in the police arriving b. having the freedom to make decisions c. distance from front to back d. act of coming between groups in a dispute (8) density a. affection for someone or something X. need for food C degree to which an area is filled or covered d. state of ownership (10) circumstance a. outcome of an event b. addition that makes something better c. feeling or action in response to something d. condition or fact that affects a situation

解決済み 回答数: 3
数学 高校生

答え合わせお願いします🙇‍♀️🙏💦

Ⅱ. 次の英文の空欄 ( 11 ) から ( 20 )に入る最も適切な英単語を, a. ~d.の中から 1つ選びなさい。 解答は解答用紙1枚目 (マークシート方式)の所定の解答欄にマークし なさい。 2893 000 Lego bricks. (Image source: Wikimedia Commons-CC license) Car made from Lego bricks. Lego has unveiled its first bricks made from recycled plastic bottles and ( 11 ) that it hopes to include the pieces in sets within two years. The prototype 4x2 bricks have been made from PET plastic from ( 12 ) bottles with additives to give them the strength of standard Lego parts, and are the result of three years of ( 13 ) with 250 variations of materials. It has already ( 14 ) plans to remove single-use plastic from boxes, and since 2018 has been ( 15 ) parts from bio-polyethylene (bio-PE), made from sustainably sourced sugarcane. These parts are bendy pieces, such as trees, leaves and accessories for figurines. Tim Brooks, vice-president for environmental ( 16 ) at Lego Group, said the biggest challenge was "rethinking and innovating new materials that are as ( 17 ), strong and high (18) as our existing bricks and fit with Lego elements made over the past 60 years". He added: "We're committed to playing our part in building a sustainable future for generations of children. We want our products to have a positive ( 19 ) on the planet, not just with the play they inspire, but also with the materials we use. We still have a long 20 ) we are making." way to go on our journey, but are pleased with the Hillary Osborne, "Lego develops first bricks made from recycled plastic bottles", The Guardian, 23 June, 2021. (https://www.theguardian.com/lifeandstyle/2021/jun/23/lego- develops-first-bricks-made-of-recycled-plastic-bottles) (-)

解決済み 回答数: 1
数学 高校生

問題の⑴と⑵について2つ質問させて下さい! ①私は⑴でf(x)を場合分けして分かりやすくしたのですが、定義域を表す時<を使わずに全て≦を使いました。答えは<も使っていたのですが、採点される時に私 の定義域の表し方はダメでしょうか? ②⑵において、(ⅰ)のグラフの傾きが0... 続きを読む

S1 整数方程式と不等式 1 2022年度 〔1〕 0≦a≦b≦l をみたす α bに対し, 関数 f(x)=|x(x-1)|+|(x-a)(x-b)| を考える。 x が実数の範囲を動くとき, f(x) は最小値m をもつとする。 (1) x < 0 およびx>1ではf(x) >mとなることを示せ。 (2)=f(0) またはm=f(1) であることを示せ。 (3)a,bが0≦a≦b≦1 をみたして動くとき,mの最大値を求めよ。 ポイント (1) x < 0 およびx>1のとき, f(x) の式の絶対値をはずすとxの2次関数 となるので, グラフの軸の位置を調べてf(x) >mであることを示す。 (2) 0≦x≦aおよび b≦x<1のときとa<x<bのとき. f(x) の絶対値をはずすと, そ れぞれxの1次関数,xの2次関数となる。 1次関数のグラフの直線の傾きによって場 合分けをすると, m=f(0) またはm=f(1) を示すことができる。 (32)の場合分けを用いて考えていく。 〔解法1〕 場合分けの不等式を用いて2変数関 数の最大値として求める方法, 〔解法2] 不等式の表す領域を図示して考える方法, 〔解 法3〕 相加平均と相乗平均の関係を利用する方法などがある。 解法 1 (1) f(x)=|x(x-1)+(x-a)(x-b), 0≦a≦b≦1より x < 0 およびx>1のとき f(x)=x(x-1)+(x-a)(x-b) =2x²- (a +6+1)x+ab = 2(x = a + b + ¹)²_ (a+b+1) 2 8 グラフの軸の方程式は, x= a+b+1 4 0≦a≦b≦1より + ab 1_a+b+] 4 はx<0のとき単調減少, x>1のとき単調増加となるの 3 となる。 Level C であるから, f(x) Oa+b+1 4 で, 最小値はもたない。 f(x)は連続関数で最小値がmであるから,x< 0 およびx>1ではf(x) >mとなる。 (証明終) (2) 0≦x≦aおよび b≦x≦1のとき f(x)=-x(x-1)+(x-a)(x-b) =(1-a-b)x+ab a<x<bのとき f(x)=-x(x-1)- (x-a)(x-b) =-2x² + (a+b+1)x -ab - 2(x_ a + b + ¹)² + . a+b+12 4 (i) 1-a-b≦0 すなわちa+b≧1 のとき 0≦x≦a および b≦x≦1のとき, f(x)のグラフの傾き は0以下であるから, f(x) は単調減少または一定であ る。 a<x<bのとき, f(x)のグラフは上に凸である。 よって, 0≦x≦1におけるf(x)のグラフは右図のよう になるので,この範囲における最小値は,α+6>1 のと き (1), g+b=1のとき(0)=f(1) となる。 (ii) 1-a-b>0 すなわち a +6 <1のとき 0≦x≦a および b≦x≦1のとき, f(x) のグラフの傾き は正であるから, f(x) は単調増加である。 a<x<bのとき, f(x)のグラフは上に凸である。 よって, 0≦x≦1におけるf(x) のグラフは右図のよう になるので,この範囲における最小値はf (0) となる。 (1) の結果と(i), (i)より, m=f(0) またはm=f(1) であ O ( 証明終) る。 [ab-a-b+1 (a+b≥1) (a+b<1) (3) (2)の結果より,m= (i)a+b≧1 のとき (a+b+1) 2 -- ab 8 ab となる。 m=ab-a-b+1=(a-1) b-a+1 ここで, αを固定してbを1-α≦b≦1の範囲で変化さ せたときのmの最大値をM(α) とすると, a-1≧0よ り, b=1-αのとき M (a) = (a-1) (1-α)-α+1=-α+α となる。 J'A O YA a a 1-a b b I 1 x b

解決済み 回答数: 1