学年

教科

質問の種類

数学 高校生

数1 (一枚目は問題と回答、二枚目は自分で解いた写真です。) 自分で解いたのは回答と全く違うやり方で、答えも違っています。二枚目のどこがダメなのか教えて欲しいです。

例題 1176 等式と値 00000 0°<0 <180°とする。 4cos0+2sin0=√2 のとき, tan0 の値を求めよ。 CHART & SOLUTION 2-in [大阪産大] 基本 113 三角比の計算かくれた条件 sin20+cos20=1 を利用 tan 0 の値は sind, cose の値がわかると求められる。 そこで かくれた条件 sin'0+cos'0=1 を利用して,sine, cose についての連立方程式 4cos0+2sin0=√2,sin'0+cos20=1 →cosを消去し, sin0 の2次方程式を導く。 を解く。 解答 4cos0+2sin0=√2 を変形して 4cos=√2-2sin0 sin20+cos20=1 の両辺に 16 を掛けて 16sin 20 +16cos20=16 ①を② に代入して ・① 4cos+2sin0 = √2 を条件式とみて、条件式 は文字を減らす方針で COSO を消去する。 4章 13 三角比の拡張 t=- 16sin20+(√2-2sin0)²=16 整理して 10sin2-2√2 sin0-7=0 ここで, sind=t とおくと これを解いてt=- よって 10t2-2√2t-7=0 sin √2+√2 (*) 10 √2 7/2150 2 sin10 0°<0 <180°であるから 0<t≤1 (*) 2次方程式 ax2+26'x+c=0 の解は x= -6' ±√b2-ac a fint. sin 0, cos0 どちらを 消去? sin を消去して coseに ついて解くと, 1 0°<0 <180°から これを満たすのは t= 7√2 10 cos 0= 2 の2 10 7√√2 すなわち つが得られるが, sin0= 10 ①から 4 cos 0=√2-2.7√2 √2 co cos = のときは 2 = ゆえに を求めると √2 10 cos 0=- 10 すなわち 2√2 5 sin0 <0となり適さない。 この検討を見逃すこともあ 0 を消去して, 符号が一定 (sin0 > 0) の sin したがって tan0= 7√2 √2 sin を残す方が, 解の吟味 =-7 COS 10 10 の手間が省ける。

解決済み 回答数: 1