学年

教科

質問の種類

数学 高校生

赤線部のようになるのが分からないので教えて頂きたいです!

7 交 30 場合の数と確率 11 場合の数 (1), 例題 11 倍数の個数 6個の数字 0, 1, 2 3 4 5 の中から異なる3個の数字を取り出して, (百の位は 0とはならないように)3桁の整数をつくる。次の3桁の整数は何個できるか。 (1) 321より大きい整数 (2) 2の倍数 (3) 5の倍数 (4) 3の倍数 [13 青山学院大・改 解法へのアプローチ (2)2の倍数は一の位が偶数である。 (4) 3の倍数は,各位の数の和が3の倍数となる。 5の倍数は一の位が0か5である。 (3) e 63 をB, (1) (2) 解答 (1) 百の位が3, 十の位が2の場合, 324, 325 のみで2個。 百の位が 3, 十の位が5の場合 4C1=4 (個) 百の位が3, 十の位が4の場合 4C1=4 (個) 百の位が4の場合 5P2=20(個) 百の位が5の場合 5P2=20(個) よって, 321より大きい整数は 2+4+4+20+20=50(個) (2) 2の倍数は一の位の数字が 0 一の位が0の場合 5P2=20(個) 2 4のものである。 CHOOS 一の位が2の場合 5P2個から 012,032,042,052 を引いて 20-4=16(個) 一の位が4の場合、一の位が2の場合と同様に16個 よって、2の倍数は 20+16×2=52 (個) (3) 5の倍数は一の位の数字が0.5 のものである。自闘を請求 第一の位が0の場合、20個 一の位が5の場合, (2) と同様に考えて 5P2-4=16 (個) 1845 よって, 5の倍数は 20+16=36 (個) (4)3の倍数は各位の数字の和が3の倍数のものである。 0から5までの3つの数字の中で,和が3 の倍数となるものは 0 を含むものは, {0, 1,2}, {0, 1,5}, {0, 2, 4}, {0, 4,5} 0を含まないものは, {1, 2,3},{1, 3,5}, {2, 3,4}, {3, 4, 5} だけある。 例えば, 0, 1,2の場合, できる整数は 3P3-2個 1,2,3の場合、できる整数は 3P 3個であるから, 3の倍数は (3P3-2) ×4+3P3×4=40 (個) 13041 64 ある AHSIN MYIN (2) 5の倍数 (4) 4500より大きく 8500より小さい整数 ★65 (1) (2) ★60 類題にChallenge ★62 5個の数字 0, 2,4, 68 から異なる4個を並べて4桁の整数をつくる。次 の整数は何個できるか。 (1) 4桁の整数 (3)3の倍数 [13 駒澤大] Jr う (1 (2 €

回答募集中 回答数: 0
数学 高校生

青チャート数学I+Aの78番、二次関数の対称移動の問題です。 放物線をX軸方向に-I、y軸方向に8だけ平行移動すると書いてあるのに、どうして+I、-8をしているのでしょうか…? 解答お願いします🙏

p.131 vele fo c) 解答 基本例題 78 2次関数の係数決定「平行・対称移動] 放物線y=x2+ax+bを原点に関して対称移動し、更にx軸方向に -1,y 軸方 向に8だけ平行移動すると, 放物線y=-x2+5x+11 が得られるという。この とき,定数a,bの値を求めよ。 基本 75~77 指針 グラフが複数の移動をする問題では, その移動の順序に注意する。 ① 放物線y=x²+ax+bを,条件の通りに原点対称移動→平行移動と順に移 動した放物線の方程式を求める。 2 ① で求めた放物線の方程式がy=-x²+5x+11 と一致することから、 係数に注目 してα,6の方程式を作り,解く。 または、 別解 のように, 複数の移動の結果である放物線y=-x2+5x+11 に注目し, 逆の移動を考えてもよい。 原点対称 原点対称 y=x2+ax+b C₁ Cz これを解いてa=7, 6=3 放物線y=x2+ax+bを原点に関して対称移動した放物線 の方程式は --y=(-x)+α(-x)+6 すなわち y=-x2+ax-b またこの放物線を更にx軸方向に-1,y 軸方向に 8 だ け平行移動した放物線の方程式は y-8=-(x+1)^+α(x+1)-6 すなわち、 y=-x2+(a-2)x+a-b+7 これがy=-x2 +5x+11 と一致するから a-2=5, a-b+7=11_ 軸方向に1, y 軸方向に8 軸方向に1,軸方向に-8 ONSONY 別解 放物線y=-x²+5x+11をx軸方向に1, y 軸方向 に8だけ平行移動した放物線の方程式は y+8=-(x-1)'+5(x-1)+11 すなわち y=-x2+7x-3 この放物線を更に原点に関して対称移動した放物線の 方程式は -y=-(-x)2+7(-x)-3 すなわち これがy=x2+ax+b と一致するから _a=7, y=-x2+5x+11 x-x y-y C1 とおき換える。 xx-(-1) y →y-8 とおき換える。 xの係数と定数項を比較。 b=3VENGEDA 133 YA 0 y=x²+7x+381040-005001+ C₂ C2 anda C3 10.4 3章 2次関数のグラフとそ xの係数と定数項を比較。 x

回答募集中 回答数: 0