学年

教科

質問の種類

数学 高校生

(3)の問題です。 ④の部分なのですが、何故④の右辺は3の倍数と言えるのでしょうか…? 3の倍数ではなく、9の倍数であると私は考えました。それとも、9の倍数という集合の中に3の倍数という要素が入っているから、3の倍数と言えるのでしょうか。

月理法は目が生じたら 17 無理数の証明, 背理法 m を整数とし,2つの命題 (P),(Q)について考える. (P)が3の倍数ならば, mは3の倍数である (Q)/3は無理数である (1) 命題 (P)の対偶を述べよ. (3) 命題 (Q)を証明せよ . 解答 (1) 命題 (P) の対偶は, (2) 命題 (P)を証明せよ. (西南学院大) mが3の倍数でないならば,mは3の倍数でない (2) 命題 (P)の対偶が真であることを示す. mが3の倍数でないとき,整数kを用いて, m=3k+1,3k+2とおける. (ア)m=3k+1のとき m²=(3k+1)=27k3+27k+9k+1=3(9k+9k2+3k)+1 となるので, は3の倍数でない. (イ)m=3k+2のとき m3=(3k+2)3=27k3+54k²+36k+8=3(9k+ 18k +12k+2+2 となるので,'は3の倍数でない. (ア)(イ)より,命題 「m が3の倍数でないならば,mは3の倍数でない」は真で ある. したがって,命題 (P) の対偶が真であるから,命題 (P)も真である.すなわち, 命題(P)が成り立つことが示された. <補足: 合同式を使うと, (ア)(イ)は次のようになる > (ア)≡1(mod3) のとき, m²≡1(mod3) (イ)=2(mod3) のとき, m²=23=8=2(mod3) (3) 3/3 が無理数であることを,背理法を用いて証明する. 33が無理数ではない,すなわち, 33 が有理数である 無理数であることの証明は,有理数であると仮定して、 背理法によって示すことが一般的である と仮定すると, 33=127 (p, gは互いに素な自然数) ①pg を 「互いに素」として おくことを忘れない! とおける. ①より3pg となり,これを3乗すると, 3p3=g3 ·② ②の左辺は3の倍数であるから, 右辺のも3の倍数である. よって, 命題 (P) から, gは3の倍数

未解決 回答数: 1