学年

教科

質問の種類

数学 高校生

数列です。計算したのですがbnで解答と変わってしまいました、どうしてもどこで間違えたか見つけられなくて、、どこで間違ったか教えてもらいたいです、 お願いします🤲🏻🙇‍♀️

8 ■る. (大) んですか 2項間漸化式 (4) 整式型~ 1=6, an+1=3an-6n+3(n=1, 2, 3, ...) で定められる数列 an | がある . (1) an+1-an=6m とするとき, bn+1 を bn を用いて表せ. (2) 数列{an}の一般項を求めよ. 149 ai 解答 (1)与えられた漸化式から, an+2=3an+1-6(n+1)+3 an+1=3an-6n+3 (2) まず,数列{bn}の一般項を求める. 数列{bn}の初項 by は, ①-②から, an+2an+1=3(an+1-an) - 6 ここで, an-1-am=b, とすると,左辺の an+2an+1=bn+1 であり,③から, bn+1=3b₂-6 b1=a2a1=(3a1-6・1+3) -a α2 は②n=1 にすればよい =2a1-3=2・6-3=9 bn+1=36-6を変形すると, よって, α=3α-6より α = 3 になるから, bn+1-3=3(bn-3) [+b+1=3bm - 6 これより,数列{bm-3}は公比3の等比数列であり,-) 3=3・3 - 6 (0) GLED). bn+1-3=306-3) 初項 b1-3=9-3=6 b-3=6.3”-1=2.3" = であるから、④より, an+1-am=2・3"+3 さらに, 左辺に②を用いて an+1 を消去すると, (3an-6n+3) -an=2.3"+3 2an=2.3"+6n nをn+1に取りかえた HOSHASHI+ . .bm=2・3"+3 ・・・④ 文系 数学の必勝ポイント・ BA ∴. an=3"+3n (東洋大) [解説講義 an+1=pan+f(n)(f(n)はnの1次式が多い)の形の漸化式は,文系の入試では,本問のよう な誘導がつけられることが一般的で、誘導に従って考えていくと「基本形の漸化式」に帰着 されることが多い 「n を n +1に変えた漸化式 an+2=pan+1+ f(n+1) を作って,与えられた 漸化式との差 (解答の①-②)を考えて,置きかえる」という解法の特徴を理解しておこう. an+1=pan+f(n) の形の漸化式 nan+1に変えた式を作って, その差を考える 185

解決済み 回答数: 1
数学 高校生

数Ⅲの極限です。 マーカー部分なのですが、上では<だったのに下で突然≦になったのは何故でしょうか? なにか意図があって変えているんですか?それとも極限を求めるにあたって=の有無はどうでもいいから付けといたみたいな感じですか?💦

9 はさみうちの原理 a1=0, an+1= 4 (1) 0≦a<1が成り立つことを,数学的帰納法で示せ. (2) 1-an+1< が成り立つことを示せ . 1-an 2 (3) liman を求めよ. n→∞ an²+36 FESJARIL (n=1, 2, ......) で定義される数列{an} について 1 2n-1 (1)により, 解けない2項間漸化式と極限 簡単には一般項を求めることができない2項間の漸化式 an+1=f(an) で定まる数列の極限値を求める定石として, 以下の方法がある. 1°am の極限が存在して, その値がαならば, liman = α, liman+1 = α であるから, αは α = f(α) を 満たす. これからαの値を予想する. n→∞0 n→∞0 2°与えられた漸化式 an+1= f(an) と α = f (α) の辺々を引くと, an+1- α = f(an) - f(a) となる が,これから, |an+1-α|≦k|an-al, kは 0≦ん<1である定数 ..☆ の形の不等式を導く.すると,|an-α|≦klan-1-a|≦ke|an-2-a|≦... ≦kn-1|a-a| 0≦an-akskn-1|α1-α| limk"-1|a-α|=0 であるから, はさみうちの原理により,|an-α|→0 言解答量 (1) n に関する数学的帰納法で示す. n=1のときは成立する. n=kでの成立,つまり 0≦x<1が成り立つとすると,k+1 について, 0≤ak+1 <1 4 4 よってn=k+1のときも成立するから, 数学的帰納法により示された . DATART an² +3 1-an (2) 漸化式から, 1-an+1=1- (1-an) 4 4 1-an>0であるから, 1+ an 4 n→∞ (なお、要点の整理・例題 (8) から,☆のkは定数でないと, an →α とは結論できない) 02312+3 -≤ak+1 <= < 1+1=1/12/2 4 .. 1-an+1< -1</2/(1-an) (3) 1-a>0と①を繰り返し用いることにより, 1 1 0≤1-an < (1-an-1)< (1- -an-2)<... <- 22 2n-1 1tan_ 4 (解答は27) -(1-a₁)= - 0 より はさみうちの原理から lim (1-4m) = 0 n-00 1 2n-1 liman=1 (岡山県大・情報工-中) 1118 :. an→α (n→∞) 0≦x<1のとき,02≦a² <12 ←漸化式を用いて1-Qn+1 を anで 表す. 本問の場合、求める極限値をα として, 1° を使うと, a²+3 α= 4 からαの値が予想できる. a=1, 3

解決済み 回答数: 1
数学 高校生

左下の🟥で囲ったとこなんですが=がついてるのは何故でしょうか? 左上の🟦が示せているので=はつかないと思ったのですが。 よろしくお願いします。

an²+3 4 (n=1, 2, ……) で定義される数列{an}について a1=0, an+1 (1) 0≦an<1が成り立つことを,数学的帰納法で示せ. 1-an (2) 1-an+1< が成り立つことを示せ . 2 (3) liman を求めよ. n→∞ 1 2n-1 解けない2項間漸化式と極限 簡単には一般項を求めることができない2項間の漸化式 an+1= f(an) で定まる数列の極限値を求める定石として,以下の方法がある. an の極限が存在して,その値がαならば, lima,=α, lima,+1=α であるから, αはα = f(α) を 1° 満たす.これからαの値を予想する. 2°与えられた漸化式 an+1=f(a) と α = f(α)の辺々を引くと, an+1-α=f(a) - f(α) となる が,これから, |an+1-α|≦k|an-αl, kは 0≦x<1である定数・ の形の不等式を導く. すると,|an-al≦klan-1-al≦k2|an-2-al≦..≦kn-1|a-a| 0≦an-a|≦kn-1|α-a| limkn-1|α1-α|=0であるから, はさみうちの原理により, an-α|→0 n→∞ · ≤ak+1<- 解答量 (1) n に関する数学的帰納法で示す. n=1のときは成立する. n =kでの成立,つまり0≦x<1が成り立つとすると,k+1 について, 02+3 12+3 .. 0≦ak+1 <1 4 よってn=k+1のときも成立するから, 数学的帰納法により示された. an²2+3 1-an² 2 1+ an (2) 漸化式から, 1-an+1=1-- (1-an) 4 4 4 (1)により tan1+1=1/21-0,>0であるから, 4 = 1-a₂+1 <1/12/2 (3) 1-a>0と、① を繰り返し用いることにより, 01-an</(1-an-1) 22 (1-0₁-2) <... < ・(1- 2² (なお、要点の整理・例題 (8) からのkは定数でないと, an→α とは結論できない) -(1-an) (1 n→∞ 2n-1 n→∞ (1−1)=1 →0より, はさみうちの原理から lim (1-am) = 0 n→∞ HAS 2n-1 liman=1 118 (岡山県大情報工-中 an→α (n→∞) 0≦x<1のとき,02≦ak2/12 漸化式を用いて 1-an+1 を an 表す. a= 本問の場合、求める極限値を として, 1° を使うと, a²+3 4 からαの値が予想できる. ∴.α=1,3

解決済み 回答数: 1
数学 高校生

数列の極限をはさみうちの原理によって求める問題です。(3)についてです。 ①この解法は数列の二項間に関する不等式をつくり繰り返し用いる事で【anが使われていない初項の式】まで辿り着くことを利用して、数列を極限0になる式ではさんでいるという解釈であっていますか? ②黄色部... 続きを読む

9 はさみうちの原理 an 22+3 4 (1) 0≦x<1が成り立つことを, 数学的帰納法で示せ . が成り立つことを示せ . (1) により, a=0, an+1= l-an (2) 1-an+1 2 (3) liman を求めよ. n10 解けない2項間漸化式と極限 an+1=f(am) で定まる数列の極限値を求める定石として、以下の方法がある. 1° 満たす. これからαの値を予想する. an の極限が存在して,その値がαならば,liman = a, lim an+1=αであるから,αはα=f(α) を 11-0 1118 2°与えられた漸化式 Qm+1=f(am) と α=f(a) の辺々を引くと, an+1-α=f(am)- f(α) となる が.これから |anti-a|≦klan-al, kは 0≦k<1である定数・ の形の不等式を導く。すると,|an-a|≦k|an-1-a|≦k2|an-2-a|≦…≦k"-1|a-a| • 0≤la₂-al≤k"-¹|a₁-al limkn-1|α1-α|=0であるから, はさみうちの原理により,|an-α|→0 ¥80 (n=1, 2, ...・・・) で定義される数列{an} について 4 -≤ak+1<. ■解答量 (1) nに関する数学的帰納法で示す. n=1のときは成立する. n=kでの成立, つまり0≦x<1が成り立つとすると, ak+1 について, 02+3 12+3 0≦ak+1 <1 4 よってn=k+1のときも成立するから, 数学的帰納法により示された. an² +3 1-a₂² 2 (2) 漸化式から, 1-an+1=1- 1+ an .(1-an) 4 4 4 1+1 < 4 1+an 4 = (なお、要点の整理・例題 (8) から, ☆のkは定数でないと, am →αとは結論できない) 1 2' 簡単には一般項を求めることができない2項間の漸化式 1 - a>0であるから, 1-an+1</(1-an) (3) 1-a>0と, ① を繰り返し用いることにより, 1 0≤1 - an</21 (1-ªn-1) < 12 (1-ªn-2) <--< -2 ²-₁ (1-₁) = 1 2n-1 1 -→0より, はさみうちの原理から lim (1−a)=0 2n-1 n→∞ 9 演習題(解答は p.27 ) 1 数列 an (n=1, 2, …) は, a1=0, an+1 .". 1 22-1 liman=1 (岡山県大情報工- 1110 ① .. an→α (n→∞) 0≦x<1のとき, 02≦² a= 漸化式を用いて1-Qn+1 を 表す. 本問の場合, 求める極限値 として, 1° を使うと, a²+3 α=1, 4 からαの値が予想できる. ..

解決済み 回答数: 1
数学 高校生

極限の問題です。黄色マーカで塗った箇所が分かりません。解説をお願いします。

8. α1=0, an+1= 4 0≦am <1が成り立つことを 数学的帰納法で示せ . が成り立つことを示せ . 19 はさみうちの原理 an² +3 (2) 1-an+1<- 2 (3) liman を求めよ. 1-an (1) により, (n=1,2,………) で定義される数列{an}について 解けない2項間漸化式と極限 簡単には一般項を求めることができない2項間の漸化式 an+1= f(an) で定まる数列の極限値を求める定石として, 以下の方法がある. 1° 4m の極限が存在して, その値がαならば, liman = α, lim an+1=α であるから, αはα = f(α) を 満たす. これからαの値を予想する. 22-00 12-00 2°与えられた漸化式 an+1= f(an) と α = f(α) の辺々を引くと, an+1- α = f (am) - f (α) となる が,これから, |an+1-α|≦k|an-al, kは 0≦k<1である定数 の形の不等式を導く.すると,|an-a|≦klan-1-a|≦k2|an-2-α|≦….≦kn-1|α1-α| · 0≤|an-a|≤k"−¹|a₁-a| 解答量 (1) n に関する数学的帰納法で示す. n=1のときは成立する. n=kでの成立, つまり 0≦x<1が成り立つとすると, ak+1 について, 0²+3 12+3 ·≤Ak+1 <- 0≦ak+1 <1 4 4 よってn=k+1のときも成立するから,数学的帰納法により示された. 2+3 an 1-a₂² (2) 漸化式から, 1-an+1=1-- 1+ an 4 4 4 1+an 1+1 4 1 2n-1 limk"-1|41-α|=0であるから, はさみうちの原理により, an-α|→0 12-00 (なお、要点の整理・例題 (8) から,☆のkは定数でないと, an →αとは結論できない) 0≤1-an<(1-an- 4 2 1-an+1</(1-an) (3) 1-a>0と, ① を繰り返し用いることにより, 1 22-1 1->0であるから, 1½ (1-an-1) < -½ 2₂ (1-ªn-2) < ···<; (1- →0 より はさみうちの原理から lim (1-an)=0 n-00 9 演習題 ( 解答は p.27 ) 1 4-a,2² In. (1-an) -(1-a₁)= .. 1 2n-1 liman=1 818 (岡山県大情報工-中) ‥. an→a (n→∞) (n=1, 2, ...) をみたす. 0≦x<1のとき,02≦ak2/12 漸化式を用いて1-Qn+1 を an で 表す. 本問の場合, 求める極限値を α として, 1° を使うと、 a²+3 4 からαの値が予想できる. 数列 an (n=1, 2, …) は, α=0, an+1= (1) すべての自然数nに対し, 0≦a < 1 が成り立つことを示せ . (2) 3次方程式-4x+1=0は0<x<1においてただ一つの解αをもつことを示せ。 (3) (2)のαに対し lau-al≤8\a-a! (n=1 ? …) tini hii. a= ∴. α=1,3 (1 (2 (E

回答募集中 回答数: 0
数学 高校生

一対一対応の数学の質問です!この漸化式ってこの方法を覚えて解くしかないのですか。

をq"+1 で割ると、奥型的な1。 (1 化式を解く (2) a=4, an+1=4an an+1= pan +S(n) (p (2 2項間漸化式の解き方 g(n)の係数を (3 数列になることを用いればよい。 an LBを定め an+1 A ればよい。また, an+1= pan+ Aq" の両辺を p"+1 で割って、 A/q か* ここで、 かか+1 とし an p b= p" A(n+1)になることは (1) an+1+ A (n+1)+B=2(an t An+B)を満たす A, Bを求める。 Cn+1=2a,+ An+B-Aと条件式を比べて,A=1, B-A=0 .. an+1+(n+1)+1=2(an+n+1)より, {an+n+1}は公比2の等比数列。 よって, antn+1=2"-1(aj+1+1)=3-2"-1 令左辺は ■解答 意。 B=1 . a,=3-2"ー1-n-1 【(2 )の別アプローチ) f(n)が Aq" の形の場合は、 12+1 an An+1 (2) ay+1=4a,-2"+1 を 4"+1 で割って, 47+1 4" 2 れ+1 1 となるので, n22のとき, とおくと,==1, bn+1=bn- 4 間瀬化式に帰着されることに 目、漸化式を2+1 で割って a1 an (2 b= 1)2-1 1- 2 an+1 1-1/1 +1 an =2- カ-1 27+1 1 1- 2 2* bn =6+(み)-)=1- =1-( an Cn= とおくと, 2" Cat=2arl これから解く。 =1-1- -+()(カ=1のときもこれでよい) 2 よって, a,=4"b,=4"{ :=2·4"-1+2* 【別解】(2) an+1+A·2"+1=4(an+A·2")を満たすAを求める。 Cy+1=4a,+4A·2"-A·2"+1=4az+A·2"+1 と条件式を比べて,A==-1. Gy+1-2"+1=4(an-2")より, {an-2*}は公比4の等比数列。 よって, an-2"=4カ-1(4-2')=2-4ガー1 . a,=2-4"-1+2" 09 演習題 (解答は p.75) 次の式で定められる数列の一般項 anを求めよ。 (1)a=2, an+1=3am+2n?-2n-1 (n21) (岐阜大) 2) a=1, an+1-2an=n-2"+1 (n之1) (日本獣医畜産大) =k(an+f(n))となる f(n)を探す。 (2)階差型に持ちE 1 3) a=1, an+1= n-1 (n21) 24t (岐阜大·教一後) ~ ン

回答募集中 回答数: 0