学年

教科

質問の種類

数学 高校生

(3)みたいに、 一般解が一つだけの時ってどうやって、一般解は一つだなと判断できるんですか? 一般解をもし、2つかいたら減点ですか? 2nπでなくnπなのはなぜですか?

32 基本 例題 142 三角方程式の解法 基本 00000 002 のとき, 次の方程式を解け。 また, その一般解を求めよ。 1 (1) sin0= √3 (2) cos 0=- 2 (3) tan 0=-√3 p.23 基本事項 指針 三角方程式 sin0=s, cos0=c, tan0=tは,単位円を利用して解く。 ① 0 を図示する。 次のような直線と単位円の図をかく。 ****** sin0=sなら, 直線 y=sと単位円の交点P, Q cos0 = c なら、直線x=cと単位円の交点P Q tan0=t なら、直線y=t と直線x=1の交点T (OT と単位円の交点がP,Q) として、点P,Q,Tの位置をつかむ。 ② ∠POx, ∠QOxの大きさを求める。 なお,一般解とは 0 の範囲に制限がないときの解で,普通は整数n (1)直線y=-1/23 と単位円の交点を P,Q とすると,求める 0 は,動径 OP, OQ の表す角である。 を用いて答える。 A 解答 7 0≦02πでは 0= 11 6 -1 π P 一般解は 0= 0 = 17——π+2 11 11 2n +2n (n は整数) (2) 直線x= √3 2 と単位円の交点をP,Q とすると,求める 0 は,動径 OP, OQ の表す角である。 (*) = //+2 116 11 0≦02πでは π と表してもよい。 6'6 1 T T 6. P√√3 2 O /1x ( π 11 一般解は 0= +2nn, (n は整数) (3)直線x=1上でy=-√3 となる点をTとする。 直線 OT と単位円の交点をP, Q とすると, 求める 0 は, 動径 OP, OQの表す角である。 200 <Oniay 2 P 3 2 5 002では 0= 3 π, 3 T 2 一般解は 0= (整数)も含まれる。 -1 50 3 -1 Q -3 \T(1-3)

解決済み 回答数: 1
数学 高校生

数IIの問題です 棒線部分の一致するときを どうして考えないといけないのでしょうか 対象な点と問題にあるので、点PとQは一致する場合を考える必要はあるのでしょうか

例題 100 直線に関する対称移動 x+y=1 に関して点Qと対称な点をPとする。 点Qが直線 2y+80 上を動くとき、点Pは直線[ CHART & SOLUTION 対称 直線に関して PとQが対称 [[1] 直線 PQ がに垂直 [2] 線分 PQ の中点が上にある 上を動く。 000 基本 Qが直線x-2y+80 上を動くときの, 直線 l x+y=1 に関して点Qと対称な点 Pの軌跡、と考える。 つまり, Q(s, t) に連動する点P(x, y) の軌跡 ①s, tax,yで表す。 ②x,yだけの関係式を導く。 直線x-2y+8=0 ...... ① 上を動く点をQ(s, t) とし, 直線 x+y=1 2 に関して点Qと対称な点を P (x, y) とする。 4」 inf線対称な直線を求め ①るには、 EXERCISES Q(s,t) あるが、左の解答で用いた 軌跡の考え方は、直線以外 71 (p.137) のような方法も 1 の図形に対しても通用する [1] 点PとQが一致しない とき, 直線 PQ が直線 ② に垂直であるから -8 01 /P(x,y) t-y.(-1)=-1 垂直傾きの積が一 S-XC 線分 PQ の中点が直線②上にあるから x+y+t=1 2 2 ④ s-t=x-y ④から ③から s+t=2-(x+y) s, tについて解くと s=1-y, t=1-x また,点Qは直線 ①上の点であるから ⑤⑥に代入して すなわち s-2t+8=0 •••••• ⑥ (1-y)-2(1-x)+8= 0 2x-y+7=0・・・ ⑦ ] 点PとQが一致するとき, 点Pは直線 ①と②の交点 であるから x=-2,y=3 これは⑦を満たす。 なぜ一致するとき考える 上から, 求める直線の方程式は 2x-y+7=0 線分 PQ の中点の座標 (2/4) 上の2式の辺々を加え ると 2s=2-2y 辺々を引くと -21=2x-2 ← s, tを消去する 方程式①と②を させて解く。 BACTICE 100

解決済み 回答数: 1