学年

教科

質問の種類

数学 高校生

赤く囲んだところが分かっていないとグラフが書けないのですが、なぜ先にグラフが書かれているのですか?教えて欲しいです!🙇‍♀️

次の不等式をグラフを利用して解け、 (1) |x+2|24 101 (2) |x|+|x=2|<xx+1 関数のグラブ 11 () x22 のとき x>0, x-220 となるので、 yーx+(x-2) -2x-2 したがって,仕)~)より、 ソ=g(x) のグラフよ グラフのかき方については, p.98, ! 解答 (1) y=lx+2| とおく. (i) x+220 つまり, x2-2 のとき ソ=x+2 [-2x+2 (x<0) y=|x|+|x-2|ー(2 (0Sx<2) (x22) リS x+しい。 り よって、ソ=x|+|x-2| のグラフは, 図の①のように なる。 また、y=x+1のグラフは,図の②となる。 ここで、のとの父思の文座標は、 (i)のとき (2x-2 第2章 \x+2を 負で。 4 (i)x+2<0 つまり, xく-2 のとき y=ー(x+2) 2 2 (グラフより,x<0 において、Dと②) は交点をもたない ことを利用しても -2x+2=x+1 から, -6 -2 0 2 メー =ーx-2 したがって, (i), (i)より、 (ISx) となるが、これは x<0 を満たさないので不適。 (i)のとき (5) 2=x+1 から, 「x+2 (x2-2) 6 り y=x+2|= 活たしし場らどうなもオー よい。 ーxー2(x<-2) HA 0Sx<2 を満たす。 グラマ ふメ=ッ - (i)のとき 2x-2=x+1 から, x=3 したがって、不等式 |x|+|x-2<x+1 の解は, また。ソ=4|のグラフは, 上の図の②となる. x++ 大 ) だ x22 を満たす. ここで, ①と2の交点のx座標は、 (i)のとき x+2=4 から, x=2 (i)のとき ーx-2=4 から, x=ー6 したがって、不等式 x+2@4 の解は, xS-6, 2Sx ( リー (A20) 1<x<3 日7ーマx Focus Kーかのグラフ のグラフはーx) のグ 分k正り にりす 不等式はグラフをかいて上下関係から判断することもできる → 不等式 f(x)>g(x) の解は, y=f(x) のグラフが y=g(x)のグラフよりも上側にあるxの値の範囲 である ー x<-2 ( 大口 の 注》本間では, p.66, 67 の例題 32, 33 で学んだ不等式について,グラフを用いて解く方法 を掲載した。式として解く方法については, p.66, 67 を参照。 (2) y=|x|+|x-2| とおく。 (i) x<0 のとき x<0, x-2<0 となる ので、 y=-x-(x-2) ++|S-ニー () y4 グラブ ( yーalx-/ ーaーpgの グラフは、3- のグ ラッを、 方向に 軸方向にgだけ行 動したものである。 方 + -r-2- 4 6303 (i) 0Sx<2 のとき x20, x-2<0 となる t代合ので, 0 =-2x+2 中 2 1 次の不等式をグラフを利用して解け, 大娘の関 54(1) |3x-1|2x y=x-(x-2) 0 1 2 3 練習 =2 (2) |x-1|+2|x+2|>5 →p.102回

回答募集中 回答数: 0